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Abstract
This paper examines a text-available speaker recogni-

tion approach targeting scenarios where the transcripts of
test utterances are either available or obtainable through
manual transcription. Forensic speaker recognition is one
of such applications where the human supervision can
be expected. In our study, we extend an existing Deep
Neural Network (DNN) i-vector-based speaker recogni-
tion system to effectively incorporate text information as-
sociated with test utterances. We first show experimen-
tally that speaker recognition performance drops signifi-
cantly if the DNN output posteriors are directly replaced
with their target senone, obtained from force alignment.
The cause of such performance drops can be attributed
to the fact that forced alignment selects only the single
most probable senone as their output, which is not de-
sirable in a current speaker recognition framework. To
resolve this problem, we propose a posterior mapping
approach where the relationship between forced aligned
senonoes and its corresponding DNN posteriors are mod-
eled. By replacing DNN output posteriors with senone
mapped posteriors, a robust text-available speaker recog-
nition system can be obtained in mismatched environ-
ments. Experiments using the proposed approach are per-
formed on the Aurora-4 dataset.
Index Terms: speaker recognition, forensic speaker
recognition

1. Introduction
Research on speaker recognition has focused either on
text-dependent or text-independent scenarios [1–3]. Text-
dependent speaker recognition assumes that the same
speech content is used for enrollment and recognition. On
the other hand, text-independent speaker recognition does
not have any constraint on the speech content. Moreover,
most of the text-independent speaker recognition system
assume that the content of speech utterances is unknown.
However, in many speaker recognition scenarios, the text
of speech utterances for both enrollment and recognition
could be obtained through manual transcription.

Forensic speaker recognition [4] is one such applica-
tion; the nature of forensic casework means that there is
always supervision of the automatic system by the foren-

sic expert. As laid out in recent European guidelines [5],
before any speech content is passed to an automatic sys-
tem, it should first be manually evaluated by the foren-
sic expert. The ‘quality of the speech content is assessed
in terms several factors, including its duration, the vo-
cal effort and emotional state of the speaker, along with
environmental noise or channel effects. If these quality
factors are satisfactory, the speaker is broadly profiled in
terms of gender, age and accent, informing the choice of a
suitable speaker population for calibration/normalization
within the automatic system. At this point, a manual tran-
scription of the speech could be made, and potentially
passed to the automatic system along with the speech
recordings. This transcription of the evidential recording
would form part of the experts case report.

One of the major challenges in speaker recognition is
the mismatch between the speech samples under compar-
isons [6–9]. In this paper, we investigate the use of text
information to improve the robustness of a speaker recog-
nition system in mismatched conditions. Previous studies
has investigated text-available speaker recognition prob-
lems, with most of them focused on text prompt speaker
recognition [10–13]. However, to the best of our knowl-
edge, no study has yet been able to effectively incorpo-
rate text information to improve the speaker recognition
system from the perspective of speaker modeling, par-
ticularly in a state-of-the art speaker recognition system
based on i-vector extraction and PLDA modeling.

The main reasons that text information has not been
effectively used in i-vector based speaker recognition sys-
tems is the lack of direct correspondence between the
universal background model (UBM) and a speech tran-
script. The recently proposed DNN-based i-vector ex-
traction [14] has the potential to overcome such limita-
tion, as the traditional UBM is replaced with tied-state
triphones (senones), that are strongly correlated with the
content of the underlying speech utterances. In fact, the
target output of each speech frame used for training DNN
system comes directly from the senone labels obtained
from forced alignment of speech transcripts. However,
the experiments in our study indicate that by directly
replacing DNN predictions with its ground truth target
senone significantly decreases the performance. This is
mainly due to the fact that the use of hard alignment, e.g.,



force alignment, introduces inaccuracies that are better
avoided when using i-vector based approaches.

To resolve the hard alignment problem of using
senone forced alignment in speaker recognition, we pro-
pose to model the relationship between target senone and
its corresponding DNN prediction probabilities in train-
ing data. This is achieved by averaging the DNN predic-
tion probabilities from frames that are aligned with each
senone target.

At the test time, instead of using the posteriors ob-
tained from DNN prediction, the posteriors mapped from
corresponding senones are used for both total variability
matrix training and i-vector extraction. The advantage of
using mapped posteriors from force aligned senones is
most significant in mismatched environments where the
DNN prediction becomes less reliable. The force align-
ment is expected to be more robust compare to DNN pre-
diction in noisy environments, as a strong prior informa-
tion is provided by means of speech transcript.

In Sec. 2, we present a short overview of the DNN
based i-Vector extraction. Sec. 3 contains the description
of proposed method. In Sec. 4 and 5, we present results
to show the effectiveness of proposed framework.

2. i-vector extraction
2.1. UBM based i-vector extraction

In i-vector extraction framework, speaker and channel de-
pendent Gaussian mixture model (GMM) supervector is
modeled as belows:

M = m+ Tw, (1)

where m is the supervector generated from the UBM
means, T is the total variability matrix formed by the ba-
sis of reduced total variability space, and w is the factor
loading also known as i-vectors.

The total variability matrix T is estimated by using
expectation maximization (EM) method as described in
[15]. After total variability matrix training, the i-vector
of each speech utterance can be represented using Baum-
Welch zeroth (Ns) and centralized first (Fs) order statis-
tics:

w∗s = (T ′NsΣ
−1T + I)−1TΣ−1Fs, (2)

where Σ is the covariance matrix obtained from UBM
model and I is the identity matrix. Here, Ns and Fs are
expressed as

Ns =


NC=1

s 0 0 0

0 NC=2
s 0 0

... ... ... ...

0 0 0 NC=c
s

 , (3)

Fs =


FC=1
s 0 0 0

0 FC=2
s 0 0

... ... ... ...

0 0 0 FC=c
s

 , (4)

where

NC=c
s =

∑
t

P (c|Xt, θUBM ), (5)

FC=c
s =

∑
t

P (c|Xt, θUBM )(Xt − µc). (6)

and c is the index of UBM mixture component, Xt is
acoustic feature at time t, µc is the mean of cth Gaussian
component.

2.2. DNN based i-vector extraction

In DNN based i-vector extraction approach [14], the
UBM is replaced with stacked senones and the poste-
rior probabilities of each speech belongs to individual
senones are obtained with DNN predictions. During the
training of DNN model, the target senones of each frame
are generated by force aligning each acoustic frame with
given speech transcript.

2.3. Force alignment based i-vector extraction

As the prediction target of DNN for building i-vector
system is obtained from force alignment, the straight
forward way of introducing text information in speaker
recognition is to replace the predicted DNN posteriors
with its ground truth senone target obtained from tran-
scripts. The posterior vector of each speech frames ob-
tained from force alignment is a vector of zeros with
only the senone that aligned with corresponding speech
frames being one. However, our experiment results show
that the direct replacement of DNN posteriors with force
aligned senone estimation, decrease the performance dra-
matically (Table. 1).

2.4. DNN posterior weighting

The reason of such performance loss when using ground
truth senone target is that the output of force alignment
assign only single senone to each frame. The limita-
tions of such hard alignment could be manifold including
the sparseness of speech data in accordance with certain
senones.

To overcome such limitation, we apply the fusion of
DNN posterior with forced aligned senone prediction.
That is, the DNN posterior probability associated with
aligned senones are forced to increase as shown below.

p′(k|xt) = α×p(k|xt) + α×1, if st = k

p′(k|xt) = α×p(k|xt) + α×0, if st 6=k
(7)

where k is senone id, p(k|xt) indicates the DNN pre-
diction probability associated with kth senone. The α



Figure 1: The mapped posteior vector for senone-500 and senone-1000.

is weighting factor that control the contributions of each
part. In our experiment, a good performance is obtained
by setting α as 0.9.

2.5. Posterior mapping

While the DNN posterior weighting in Sec. 2.4 could
effectively incorporate alignment information from tran-
script in a softer way than directly using force alignment,
it is not theoretically well motivated and involves a use of
hyper-parameter for fusing the posteriors from two differ-
ent sources. In this section, we propose another approach,
which models the correlation between force alignment
and DNN prediction in the training data. The objective
of this approach is to find the maximum likelihood DNN
posterior vectors given force alignment. The posteriors
obtained with this approach is more robust to the ones
obtained from DNN prediction, as the effect of noise or
mismatch environment on force alignment is much less
than DNN prediction due to supervised information from
transcription.

Specifically, we model the correlation between force
alignment and DNN posterior probabilities using the pos-
terior probabilities obtained from DNN training data. As
during training, there is an one to one mapping between
force alignment and DNN posteriors for each speech
frame. Note that the data used for training this relation-
ship has no overlap with the ones used for composing
speaker verification trials. We model the correlation be-
tween DNN posteriors and their targets senone which ob-
tained from force alignment as follow:

Mk =

∑
st=k pt

T
(8)

where Mk is the average of DNN posterior probability
associated with target senone k, pt is the DNN posterior
prediction vector as

pt = [p(s1|xt), p(s2|xt), ..., p(sK |xt)], (9)

T is the total frame number,. After obtain Mk for each
senone using training, we replace pt with Mk, if the
speech frame xt is aligned with k-th senone. We per-
form such posterior mapping during both total variability
matrix training and i-vector extraction states.

Fig. 1 is an example of posterior mapping obtained
from 500th and 1000th senone respectively. The upper
plot of Fig. 1 is the average posterior prediction on the
training data when target Senone is 500. As expected,
the average posterior probability on Senone 500 is much
higher than the other ones. However, it is interesting to
notice in the lower plot of Fig. 1 that the highest posterior
probability when target Senone is 1000 is actually other
senones. This indicates that the prediction of Senone
2000 is easily confused by other Senones.

3. Experiments
3.1. System setup

As the standard speaker evaluation corpus such as NIST
SRE does not include speech transcripts, the proposed
text based speaker recognition system is evaluated on
Aurora-4 database. The Aurora-4 is noisy version of
Wall Street Journal (WSJ0) corpus. The multi-condition
training set including 7137 utterances from 83 speakers.
Half of the training utterances are obtained from the pri-
mary Sennheiser microphone. The other half are record-
ings from different secondary microphones. Part of those
utterances are clean speech without noise and the other
part are consists of corrupted utterances with six differ-
ent noises (street traffic, car, train station, babble, airport,
restaurant) at 10-20 dB SNR.

The UBM based i-vector extraction system are
trained on multi-condition training set. The 2048 mix-
ture of UBM and 400 dimension total variability matrix is
trained on MFCC features of 39 dimension (13+4+44).
For backend verification both the cosine distance similar-
ity (CDS) measure and probabilistic linear discriminant



Table 1: Experiment results on trials with utterances in-
cluding both noisy and clean one.

CDS PLDA

I-vector (UBM) 19.48 8.15

I-vector (DNN) 17.87 8.84

I-vector (FA) 29.93 12.29

I-vector (DNN+weight) 16.30 8.00

I-vector (DNN+mapping) 15.91 6.67

analysis (PLDA) are used for evaluation [16, 17].

For bulding DNN based i-vector extraction system
[18], GMM-HMM models with 3024 distinct tied-state
triphones are trained using MFCC features along with
their linear discriminant analysis (LDA) and maximum
likelihood linear transform (MLLT). The alignment ob-
tained from GMM-HMM system is then used for train-
ing DNN-HMM system. For the DNN-HMM systems,
we first generatively pretrain the DNN with 7 layers of
stacked RBM with 2048 hidden nodes in each layer. The
DNN-HMM system was trained with 40 dimensional log
Mel filterbank (FBANK) features. We use 256 minibatch
and 0.008 as the start learning rate. After each epoch of
training, the learning rate is reduced by half when the im-
provements in development set are less than 0.5%.

3.2. Results

The evaluation is performed on 2324 utterances from 8
unique speakers. A total of 806433 trials are created, in-
cluding 98518 target trials. The experiments results are
shown for both noisy trials in Table. 1 and clean trials in
Table. 2. The results indicate that DNN based i-vector ex-
traction does not show much advantages over UBM based
i-vector extraction due to the limited amount of data used
for training DNN. It can also be observed that the direct
use of force alignment (FA), decrease the performance
significantly. This indicates the importance of soft align-
ment in i-vector extraction. On the other hand, the pro-
posed approaches based on DNN posterior weighting and
DNN posterior mapping consistently outperforms both
UBM and DNN based i-vector systems in noisy condi-
tions. The relative improvement is higher using PLDA
modeling approach. This can be explained by the fact that
the utterances used for training PLDA is also noisy and
therefore benefit more from proposed approaches. The
best performing system is based on DNN posterior map-
ping in both noisy and clean evaluation setup.

Table 2: Experiment results on trials from clean utter-
ances only.

CDS PLDA

I-vector (UBM) 5.39 2.05

I-vector (DNN) 6.72 2.45

I-vector (FA) 14.47 4.41

I-vector (DNN+weight) 5.66 1.79

I-vector (DNN+mapping) 7.11 1.27

4. Conclusion
In this study, we investigate the use of text informa-
tion for improving the robustness of speaker recognition
system. The proposed approached could potentially be
beneficial for forensic speaker recognition where the hu-
man supervision can be expected. We evaluated the pro-
posed systems using Aurora-4 database which has been
widely used in the area of robust speech recognition.
The experimental results indicate that proposed text avail-
able i-vector extraction framework consistently outper-
form conventional UBM and DNN based i-vector system.
While the proposed approaches based on DNN-posterior
weighting and mapping could effectively introduce text
information into speaker modeling, further studies are
needed to fully exploit the text knowledge.
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