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IV. CONCLUSION An Improved (Auto:l, LSP:T) Constrained Iterative

In this work, it is shown that the actual energy of analysis framesSpeech Enhancement for Colored Noise Environments
should be taken into account for interpolation. The required approx-
imation of the sample autocorrelation function can be implemented Bryan L. Pellom and John H. L. Hansen
by multiplying the autocorrelation coefficients with the frame energy
and interpolating this function (ACF interpolation). ACF interpolation

outperformed LSP interpolation in a subjective test, contrasting ti‘;

Abstract—n this correspondence we illustrate how the (Auto:l, LSP:T)
Snstrained iterative speech enhancement algorithm can be extended

objective "_E‘SU“S- _ o to provide improved performance in colored noise environments. The
The main reason for the discrepancy between subjective amddified algorithm, referred to here as noise adaptive(Auto:l, LSP:T),

objective results is that the largest outliers occur in low energy pafgerates on subbanded signal components in which the terminating

of segments with rapidly changing energy and it turned out that th
do not have much influence on the subjective quality.
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é’%ation is adjusted based on thea posteriori estimate of the signal-
to-noise ratio (SNR) in each signal subband. The enhanced speech is
formulated as a combined estimate from individual signal subband
estimators. The algorithm is shown to improve objective speech quality
in additive noise environments over the traditional constrained iterative
(Auto:l, LSP:T) enhancement formulation.
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sounding enhanced speech with little processing artifacts. The caoi-the all-pole model, 2) that it possess speech-like characteristics
straints are applied based on speech production ideas from estimdéed., natural formant bandwidths), and 3) to provide frame-to-frame
broad phoneme classes. Since the method employs an iteratigatinuity in vocal tract characteristics. In particular, two types of
Wiener filter, the proper terminating iteration must be obtained frospectral constraints known asterframe and intraframe constraints
prior simulation in the desired noise conditions. A revised clasare applied to the speech spectrum during the iterative all-pole
directed (CD-Auto-LSP) algorithm employed a noisy trained hiddgmarameter estimation. Interframe constraints are applied over time
Markov model recognizer to classify input phoneme classes, &othe LSP position and difference parameters in order to reduce
that a class dependent terminating iteration could be applied [1fifhme-to-frame pole jitter and to ensure that the enhanced speech
This resulted in improved speech quality consistency for speebhs speech-like characteristics. For fiie LSP position parameter
degraded with white Gaussian noise (WGN) from the TIMIT dateomputed from théth frame on theth iteration,pi”(j), the spectral
base. Other constrained iterative methods (ACE-l, ACE-Il) hawpnstraint is implemented by smoothing over an adaptive triangular
been proposed by Nandkumar and Hansen [9], [12] which addréssse of support of widtRN(j) + 1 frames,

colored noise using a dual-channel framework with various auditory

processing constraints such as critical-band filtering, intensity-to- NG) ' k| o
loudness conversion, and lateral neural inhibition. While previous Pe ()= Z H(E:,j)- {1 - m} pere(d)
single-channel methods such Auto-LSP and CD-Auto-LSP have been k=—N(5) b

successful in white noise environments, their constraints have not Vi=1,---,5 (3)

been specifically formulated to address the changing structure of ,

colored background noise. Methods such as ACE and adaptWBere#(-) andW(.) represents the smoothing window height and
noise canceling [13] address this via a second reference chanMéfith which are dependent upon both frame enefgyand LSP

In this study, we propose to reformulate the manner by whidparameter index. In addition to LSP position parameter smoothing,
spectral constraints are applied within the Auto-LSP enhancemé&fgistraints are applied to the LSP difference parameters in order to
algorithm to specifically address the nonuniform impact coloreRSure that the pole locations do not drift too close to the unit circle
noise will have on degraded speech. As such, when backgrmﬁﬂijsmg unnatural formant bandwidths in the enhanced speech.
noise levels are high, constraints will be tightened, especially in The second type of constraint, known as intraframe constraints, are
regions where smooth spectral transitions should take place (i_%qplied across iterations to the autocorrelation parameters in order
voiced transitions from vowels to semivowels). For portions of th® control the rate of improved estimation for phoneme sections
frequency domain where the SNR is high, spectral constraints wess sensitive to noise. This relaxation constraint is implemented by
be either relaxed or disabled, since such constraints could alter fiféimating theith autocorrelation lag as a weighted combination of
natural spectral structure of speech in these clean regions. This pdpérkth 1ag from M previous iterations. Specifically

is organized as follows. In Section Il, we present details of the "

Auto-LSP enhancement_algo_rlthm. Next, _the no!se adaptive Auto- Rﬁi)[k] _ Z ’Tl’y,LREiim)[k] 4)

LSP enhancement algorithm is proposed in Section lll, followed by ' )

algorithm evaluations in Section IV. Finally, we draw conclusions in "
Section V. with the condition thafy"Y_ ., = 1.
The constrained iterative enhancement algorithm was formulated
Il. AUTO-LSP ENHANCEMENT using an additive white Gaussian noise (WGN) assumption. As such,

The constrained iterative Auto-LSP enhancement approach is baiezlmethod has been shown to be successful in WGN environments,
upon extensions to the two-step maximuan posteriori (MAP)  with some improvement for colored noise sources as well. In WGN
estimation of the all-pole speech parameters and noise-free speetironments, the incorporation of spectral constraints was shown
formulated by Lim and Oppenheim [7]. In the unconstrained MARO provide a more consistent terminating iteration and improved
estimation procedure, thigh frame of speech is modeled by a set obbjective speech quality over the unconstrained iterative enhancement
all-pole linear predictive parametefig and gaing,. The estimation method [7].
process iterates between two sequential MAP estimations. For the

ith algorithm iteration, the all-pole speech model parama“?%%wre

first obtained from the estimated noise-free speech atithel)th ll. NoISE ADAPTIVE AUTO-LSP ENHANCEMENT

iteration,sit l)_ In the second step, a MAP estimate of the noise-free In many real-world settings, such as aircraft cockpit or automobile
. . . i . ~(i=1)  environments, the spectral content of the degrading noise is not

speech is obtained by app'_y'”g a r_loncausal Wlener_fllte%to flat, but rather concentrated within a small portion of the frequency

Here, the frequency domamj:l)ter is constructed using the all-polgecirym. This may result in only a localized degradation of speech

model spectrum described @ ~ as an estimate of the noise-freequality over a finite frequency interval. Furthermore, due to the

speech power spectrum. The estimation process attthéeration time-varying nature of speech, the local SNR across both time and

can be described by frequency may differ dramatically from frame-to-frame. In the Auto-
(i) | &) ) LSP formulation described in Section I, inter- and intraframe spectral
MAXp(@ Se ,gg) which givesd, (1) constraints are applied to the speech signal at each iteration regardless
IOV REX el ) oo of the spectral content of the noise. In low-frequency distortions,
MAXp(S¢ [dr .S¢ .ge) which givessS, (2 such as automobile highway noise, it is undesirable to apply spectral
A(0) smoothing constraints to regions of high frequency, since this can

where S, represents the original noise-corrupted frame of speedleduce the quality of the high SNR spectral components. In theory,
The two-step procedure is repeated until arpriori terminating spectral based speech constraints should be selectively applied only
criterion is satisfied. to regions of the speech signal which have been corrupted by noise.

In the constrained iterative approach [10], spectral constraints d&neother words, either a soft-decision or hard-decision is needed to
applied between MAP estimation steps in order to ensure 1) stabilitgtermine when constraints should be applied.
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As a consequence, we propose an extension to the Auto-LSP er2. lterative Estimation:
hancement algorithm for colored noise environments by considering ) _ _
the decomposition of the estimated enhanced speech signal into a @) Obtain enhanced speech frame from ttte iteration,

set of Q frequency subbands. Here, we assume that the degrading 3" (n), from Auto-LSP.
noise will impact each subband differently and hence, the terminating b) Decomposégi)(n) into () subband components. If the
iteration should be appropriately adjusted for each time-frequency terminating iteration for the current subband component
partition. By reducing the terminating iteration in spectral regions equals the current iteratigiTER, (k) = ¢), then retain
of high SNR, spectral smoothing is reduced and speech quality the kth subband component as a final estimate for the
is maintained. In a similar manner, by increasing the terminating current subband.
iteration in spectral regions of low SNR, noise attenuation can be c) Repeat (a) to obtain estimate for thiet 1)th iteration
improved. Hence, selecting an appropriate terminating iteration based until terminating iteration]TER ..+, iS reached.
on the presence of noise in each signal subband provides a better
compromise between signal distortion and noise attenuation. 3. Signal Reconstruction:
In the proposed framework, we consider the speech signal as being
comprised of a set of) frequency bands which uniformly partition a) For each frame, sum the retained subband components
the linear frequency scale. The speech sigial) can be expressed from step 2 and recover the enhanced speech frame.
as the sum of individual subband components
Q
Q Q My—1 . .
s =3 sk =3 3 hmiksti—m) = 2
k=1 k=1 m=0
where s(n; k) represents the time-domain output of theh filter. b) Recover final enhanced speech signal using standard
Although in this formulation we assume a uniform bank of band- overlap and add procedure.

pass filters, other filterbank decompositions such as those based on ) o )

models of auditory perception could also be used [9], [12]. Using !N Summary, an estimate of the lo@posterioriSNR is computed
frame-oriented processing of the subband filtered speeet), the ©N @ frame-_by-f_rarne ba_'sls in each S|gnal subband in order to s_,elect
algorithm is summarized as followa:(sample value(: frame index, 2 Iocal_termlnatlng_ |terat|on._For real-time enhancement applications,
i+ iteration, k: frequency band). the noise energy in each signal subband (and noise power spectral

estimate) can be updated during periods of silence or speaker pause.

Consequently, local SNR estimates will in general depend on the

a) Decompose théh degraded speech frame n), into  most recent estimate of the noise energy corrupting each subband.
subband signal components(n; k). Compute the sig- In this work, we consider a linear relationship between the local

1. Initialization:

nal energy in each subband component SNR estimate (measured in dB) and terminating iteration selection
B 0, and constrain the amount of iterations to range betwWa&RR i,
Eu(k) = Z‘”(”’]“)' to ITER.... within each signal subband. A reasonable value for

n

ITERmin is one and a reasonable value IfrER ... IS between

b) Estimate average noise enerdhoi..(k), in each sub- 4 and 7. In general, the specific choice of either parameter will
band fromN most recent frames classified as noise-onlglepend on global SNR characteristics of the observed noise-corrupted

(silence) segments speech. We will refer to the proposed algorithmrasse adaptive
N Auto-LSP due to the adaptation of the terminating iteration based
Eroiee(k) = i ZEnf(j)(k) on the presence of noise in each time-frequency signal component.
N Py ) An overall block diagram of the proposed algorithm is illustrated in
Fig. 1.

wheren f(j) represents the index of théh most recent
frame of noise-only activity.

c) Compute an estimate of treposteriori SNR (in dB) IV. ALGORITHM EVALUATIONS
for each signal subband

) A. Evaluation Data Base and Noise Sources

E(k
SNR/(k) = 101log;, <Ef7(()” In order to examine the effectiveness of the proposed algorithm
newer in a variety of additive noise environments, ten additive noises
where the local SNR in each time-frequency band isummarized in Table | were used for evaluatfoAircraft cockpit,
constrained to range from5 to 25 dB. automobile highway, and helicopter fly-by noise are slowly varying
d) Assign a terminating iteratiofTER. (k) to each signal low-frequency distortions. Large city, city in the rain, and large
subband %" and frame ‘¢” based on the local SNR crowd noise exhibit slowly varying spectral characteristics. IBM PS-2

estimate in each band cooling fan noise is primarily a stationary low-frequency distortion,
while that of the Sun 4/330 Workstation is primarily a stationary
ITER, (k) :int{(ITERmX — ITERmin) higher-frequency distortion. Furthermore, the cooling fan spectra
SNRunax — SNRe(k) include a prominent spectral peak due to tne rotation of the fan blades
X <SNRm;X — S\‘R,;nila )}—HTERWn (approximately 305 Hz for IBM PS-2 cooling fan and 3075 Hz for

Sun cooling fan noise).
whereint{-} rounds to the closest integ&tNR..x =

25 dB andSNRumin = —5 dB. ITERmax andITERmin °The same noise sources were used for speech recognition

represent the maximum and minimum terminating it€favajuations in [1] and can be obtained from the web address
ation allowed in each signal subband. http://www.ee.duke.edu/Research/Speech/rspl_software.html.



576

iciel AUTO-LSP CONSTRAINED

IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 6, NO. 6, NOVEMBER 1998

C INPUT NOISE CORRUPTED SPEECH )

!

Y

ITERATIVE
WIENER FILTER ENHANCEMENT

(A) AUTO-LSP ENHANCED SPEECH AT ith ITERATION
'y

>_

(@]

=z

Y

o

&

[ o000

<ok

=4

<T

m

[43]

) 3

1 FRAME COUNT
COPY ENHANCED SIGNAL
SUBBAND COMPONENT IF LOCAL
4 TERMINATING ITERATION REACHED

. THI

Q

=z

5

o

L

g

=k

=

<€

[s4]

o

]

[} i EEAY

1 FRAME COUNT

(B) NOISE ADAPTIVE AUTO-LSP ENHANCED WAVEFORM

Fig. 1.

!

RECONSTRUCT ENHANCED
SIGNAL FROM INDIVIDUAL
SUBBAND COMPONENTS

y

NOISE-ADAPTIVE AUTO-LSP
ENHANCED SPEECH

Noise adaptive constrained iterative speech enhancement.

TABLE |

ADDITIVE NOISES CONSIDERED FORENHANCEMENT EVALUATION

Noise

Description

Aircraft Cockpit
Automobile Highway
Helicopter Fly-By
Large City
City Rain
Large Crowd
PS-2 Cooling Fan
Sun Cooling Fan
Flat Communication
White Gaussian

Noise recorded from the cockpit of a C130 transport plane

Noise recorded in a car traveling 95 Km/hour

Noise recorded as a helicopter flew overhead

Noise recorded on the streets of a large city

Noise recorded during a rainstorm

Noise recorded from a crowded auditorium

Noise recorded from the cooling fan of an IBM PS-2/80 computer
Noise recorded from the cooling fan of a Sun 4/330 Workstation
Noise recorded from a flat communications channel

Computer generated white Gaussian noise
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TABLE 1l
OBJECTIVE SPEECH QUALITY VERSUS SNR FOR ORIGINAL DEGRADED SPEECH (100 8 kHz 3wpPLED TIMIT SENTENCES WITH
ADpDITIVE NOISE), ENHANCED SPEECH PROCESSED WITHAUTO-LSP AND THE PROPOSEDNOISE ADAPTIVE AUTO-LSP ALGORITHM

Hakura-Saito Likelthood Measure under 10 Environmental Noises

Global Original | Enhanced Enhanced
Noise Type SNR (dB) || Degraded | Auto-LSP | Noise Adaptive
15 1.76 0.72 0.58
Aircraft Cockpit 10 2.94 1.24 1.03
5 4.36 2.03 1.73
15 4.08 1.84 1.39
Automobile Highway 10 6.34 2.71 2.22
5 8.37 4.01 3.39
15 1.66 1.31 0.93
Helicopter Fly-By 10 2.57 1.88 1.42
5 3.80 2.75 2.22
15 0.75 0.61 0.56
Large City 10 1.17 1.02 0.94
5 1.70 1.63 1.49
15 0.70 0.69 0.65
City Rain 10 1.09 1.12 1.06
5 1.55 1.74 1.61
15 0.71 0.72 0.66
Large Crowd 10 1.11 1.15 1.06
5 1.60 1.78 1.65
15 2.79 1.55 1.24
PS-2 Cooling Fan 10 4.20 2.06 1.75
5 5.94 2.82 2.53
15 1.04 0.66 0.61
Sun Cooling Fan 10 1.63 1.06 0.98
5 2.34 1.66 1.54
15 1.00 0.73 0.69
Flat Communication 10 1.54 1.16 1.10
5 2.17 1.74 1.66
15 1.78 1.21 1.11
White Gaussian 10 2.67 1.92 1.76
5 3.68 2.87 2.63
B. Evaluation Method Auto-LSP algorithm was terminated at the fourth iteration. This was

The proposed noise adaptive Auto-LSP enhancement algoritfi@yind to provide the best overall objective speech quality during
was evaluated by adding a controlled level of noise to 100 sentenéd§rmal experimentation using several additive noise sources. During
extracted from an 8 kHz lowpass filtered version of the TIMITENhancement processing, the noise power spectrum was estimated
data base. For each noise type, global SNR’s of 5, 10, and f8m the first 880 samples (110 ms) of §|Ience at the bgglnnlng of
dB were considered. In this study, objective speech measures [¢#fh utterance. Note that a one-time estimate of the noise was used
were used for algorithm evaluation. For each degraded utterance, $i6€ €ach TIMIT utterance contains approximately 3 s of speech
ltakura—Saito (IS) likelihood measure was calculated before and af@&ivity with little or no pause between words.
enhancement processing. The frame-based IS likelihood measure for

a (clean) reference frame, and (noisy) test frame, is given by C. Evaluation Results

Results of the algorithm evaluations are summarized in Table II.
Here, the IS likelihood measure for the original degraded speech,
enhanced speech processed using traditional Auto-LSP, and enhanced
speech processed using the proposed noise adaptive Auto-LSP al-

) a‘i o3 gorithm is shown. Considering SNR’s ranging from 5 to 15 dB,
V() = log <W> - 1°g<m>' (7) " we see that both enhancement approaches reduce spectral distortion

‘ and improve objective speech quality (i.e., reduced IS measures
Here, A4(¢’?) and A4(e??) represent the linear prediction analysisafter processing reflect less spectral mismatch). For example, the
filters for the (noisy) test frame,; and (clean) reference framg,. A mean IS measure for speech degraded with aircraft cockpit noise
measure of global sentence quality was then determined by computitglO dB SNR is 2.94 before enhancement, 1.24 after Auto-LSP
the average of the frame-based measures across speech-only seatioimancement, and further reduced to 1.03 using the proposed noise
of each utterance. adaptive Auto-LSP algorithm. Furthermore, we see that the difference

For the noise adaptive approach, a total of eight signal subbandlS measures between speech processed using Auto-LSP and the
components that uniformly partitioned the linear frequency scapeoposed algorithm is most dramatic for colored noises while less
were utilized. Furthermore, the terminating iteration in each signdiamatic for noises that are almost spectrally flat. This can be partially
subband was constrained to range from one to four iterations. Tétributed to the ability of the proposed algorithm to adaptively

; Y a8
dis(xg, xq) = / [P —v(8) - 1] o (6)

where
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TABLE 11l
OBJECTIVE SPEECH QUALITY VERSUS BROAD PHONEME CLASSIFICATION. HERE, 100 TIMIT SENTENCESWERE DEGRADED WITH ADDITIVE
AIRCRAFT CockPIT Noise (10 dB SNR)AND SUBSEQUENTLY ENHANCED UsING AuTo-LSP AND NoISE ADAPTIVE AuTO-LSP
Objective Qualily versus Broad Phoneme Classification
100 TIMIT sentences, Aircraft Cockpit Noise, 10 dB SNR

Sound Iakura-Saito Likelihood Measure
Type Degraded | Auto-LSP | Noise Adaptive | % of frames
Silence 6.07 4.78 4.11 14.0%
Vowel 0.45 0.17 0.16 37.5%
Nasal 1.38 0.88 0.70 6.3%
Stop 3.90 2.06 1.60 18.3%
Fricative 9.91 3.44 2.99 14.6%
Liquids and Glides 1.45 0.66 0.57 9.3%
Voiced + Unvoiced 2.95 1.24 1.03 86.0%
Total [ 339 1.72 1.45 | 100.0%

TABLE IV

OBJECTIVE SPEECH QUALITY VERSUS BROAD PHONEME CLASSIFICATION. HERE, 100 TIMIT SENTENCES WERE DEGRADED WITH ADDITIVE
AutomoBILE HigHwAY Noise (10 dB SNR)AND SUBSEQUENTLY ENHANCED UsING AuTo-LSP AnD Noise ADAPTIVE AuTo-LSP

Objective Quality versus Broad Phoneme Classification
100 TIMIT sentences, Automobile Highway Noise, 10 dB SNR

Sound Ttakura-Saito Likelihood Measure
Type Degraded | Auto-LSP | Noise Adaptive | % of frames
Silence 24.11 14.15 14.85 14.0%
Vowel 4.34 1.96 1.27 37.5%
Nasal 3.19 1.64 1.06 6.3%
Stop 8.19 3.52 3.50 18.3%
Fricative 11.62 4.54 3.92 14.6%
Liquids and Glides 4.61 1.92 1.57 9.3%
Voiced + Unvoiced 6.37 2.71 2.22 86.0%
Total [ 885 | 428 | 3.93 | 100.0%

adjust the final terminating iteration based on local SNR estimatggality over the traditional Auto-LSP formulation for each broad
obtained in each time-frequency partition. In addition, the terminatirgpeech class. For example, the mean IS measure for stop consonants
iteration adjustment ensures a relaxation of the spectral smoothitgs reduced from 3.90 for the original degraded to 2.06 for the
constraints in regions where the noise corruption is not significadtuto-LSP enhanced speech. The noise adaptive algorithm further
More important, however, we note that the proposed algorithm leaigsluces this measure to 1.60. In general, the proposed algorithm
to improved objective speech quality over the original Auto-LSProvides the most improvement for speech classes such as stops and
formulation for all noises and SNR’s examined. fricatives. However, for automobile highway noise, there is also a

It is interesting to point out that the noise adaptive Auto-LSPubstantial improvement for vowel sections (e.g., the average IS is
algorithm leads to further improvements in objective speech qualift’y”h‘?r reduced from 1.96 to 1.27 after processing with the proposed
for the case of white Gaussian noise. Here the mean IS meas@@rithm).
for 10 dB was 2.67 for the original degraded test set, 1.92 for the
Auto-LSP enhanced, and 1.76 for speech enhanced by the proposed V. CONCLUSION

f'gof"h?- T.:"S |ts nott su”rprlsmg,hsflnce Aut;)-LSP ippllzs ?_ f|x?d The original formulation of the constrained iterative Auto-LSP en-
efminating rieration o afl Speech frames. hence, by adapiing Hgncement algorithm proposed by Hansen and Clements [10] focused

terminating iteration per time-frequency subband, the algorithm iS4 irive WGN interference. In such conditions, the application of
better able to adapt to the time-varying nature of the speech sigagh.ya| constraints to the LSP parameters and autocorrelation lags of
by reducing the terminating iteration in regions containing negligiblg o degraded speech was shown to provide improved speech quality
noise corruption while at the same time increasing the terminatingq 5 more consistent terminating criteria. In colored noise conditions,
iteration in regions of significant noise corruption. We also foung,ch as aircraft cockpit and automobile highway environments, the
that both algorithms provided little or no improvement for “city rain"ato-L.SP algorithm does not provide as much improvement in speech
noise and “large crowd” noise. However, this can be attributed jality, since spectral constraints are applied to the entire frequency
both the nonstationarity of the background noise as well as the faglectrum regardless of the localized nature of the noise.
that a one-time estimate of the noise was used across each sentengethis correspondence, we have formulated a noise adaptive Auto-
in this set of experiments. LSP enhancement algorithm to provide improved objective speech
Tables Ill and IV illustrate specific improvements in objectivejuality in colored noise environments. In the proposed algorithm,
speech quality for broad speech classifications in aircraft cockpie considered the enhanced waveform as being composed of a
and automobile highway noise conditions. . In each noise conditisum of it's individual subband signal estimators. By adapting the
the proposed noise adaptive algorithm further improves objectiterminating iteration for each time-frequency patrtition, the proposed
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algorithm was shown to provide a better compromise between signal Improving Performance of Spectral Subtraction in
distortion and noise attenuation. We considered ten additive noiseSpeech Recognition Using a Model for Additive Noise
sources ranging from highly colored (e.g., automobile highway noise)

to completely flat (e.g., white Gaussian noise) and demonstrated thadtlestor Becerra Yoma, Fergus R. Mclnnes, and Mervyn A. Jack
the proposed extension to the original constrained iterative algorithm

improves objective speech quality over a wide range of SNR's.

Abstract—T his correspondence addresses the problem of speech recog-
nition with signals corrupted by additive noise at moderate signal-to-noise
ratio (SNR). A model for additive noise is presented and used to compute
the uncertainty about the hidden clean signal so as to weight the
estimation provided by spectral subtraction. Weighted DTW and Viterbi
(HMM) algorithms are tested, and the results show that weighting the
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literature and seems to be generic and interesting from the practical

In the results presented in this correspondence, the signal was pro-

cessed by 14 DFT mel filters. 8(k), N(k), and X (k) correspond
to the fast Fourier transform (FFT) of(i),n(i), and x(i) at the
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