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IV. CONCLUSION

In this work, it is shown that the actual energy of analysis frames
should be taken into account for interpolation. The required approx-
imation of the sample autocorrelation function can be implemented
by multiplying the autocorrelation coefficients with the frame energy
and interpolating this function (ACF interpolation). ACF interpolation
outperformed LSP interpolation in a subjective test, contrasting the
objective results.

The main reason for the discrepancy between subjective and
objective results is that the largest outliers occur in low energy parts
of segments with rapidly changing energy and it turned out that these
do not have much influence on the subjective quality.
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An Improved (Auto:I, LSP:T) Constrained Iterative
Speech Enhancement for Colored Noise Environments

Bryan L. Pellom and John H. L. Hansen

Abstract—In this correspondence we illustrate how the (Auto:I, LSP:T)
constrained iterative speech enhancement algorithm can be extended
to provide improved performance in colored noise environments. The
modified algorithm, referred to here as noise adaptive(Auto:I, LSP:T),
operates on subbanded signal components in which the terminating
iteration is adjusted based on thea posteriori estimate of the signal-
to-noise ratio (SNR) in each signal subband. The enhanced speech is
formulated as a combined estimate from individual signal subband
estimators. The algorithm is shown to improve objective speech quality
in additive noise environments over the traditional constrained iterative
(Auto:I, LSP:T) enhancement formulation.

I. INTRODUCTION

THERE are numerous areas where it is necessary to enhance
the quality of speech that has been degraded by background

distortion. Some of these environments include aircraft cockpits,
automobile interiors for hands-free cellular, and voice communi-
cations using mobile telephone. Speech enhancement under these
conditions can be considered successful if it i) suppresses perceptual
background noise and ii) either preserves or enhances perceived
speech quality. As voice technology continues to mature, greater
interest and demand is placed on using voice-based speech algorithms
in diverse, adverse, environmental conditions. It is suggested that
the success of advancing speech research in the fields of speaker
verification, language identification, and automatic speech recognition
could be improved by incorporating front-end speech enhancement
algorithms [1].

A number of speech enhancement algorithms have been proposed
in the past. A survey can be found in [2], as well as an overview of
statistical based approaches in [3]. Several enhancement approaches
have been proposed using improved signal-to-noise ratio (SNR)
characterization [4], linear and nonlinear spectral subtraction [5], [6],
and Wiener filtering [7]. Traditional speech enhancement methods
are based on optimizing mathematical criteria, which in general are
not always well correlated with speech perception. Several recent
methods have also considered auditory processing information [8],
[9], and constrained iterative methods using various levels of speech
class knowledge [10]–[12].

In this study, we focus on an extension to a previously pro-
posed constrained iterative speech enhancement algorithm termed
(Auto:I, LSP:T)1 [10] (described briefly in Section II). Basically,
this method employs spectral constraints on the input speech fea-
ture sequence across time and iterations to ensure more natural
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sounding enhanced speech with little processing artifacts. The con-
straints are applied based on speech production ideas from estimated
broad phoneme classes. Since the method employs an iterative
Wiener filter, the proper terminating iteration must be obtained from
prior simulation in the desired noise conditions. A revised class-
directed (CD-Auto-LSP) algorithm employed a noisy trained hidden
Markov model recognizer to classify input phoneme classes, so
that a class dependent terminating iteration could be applied [11].
This resulted in improved speech quality consistency for speech
degraded with white Gaussian noise (WGN) from the TIMIT data
base. Other constrained iterative methods (ACE-I, ACE-II) have
been proposed by Nandkumar and Hansen [9], [12] which address
colored noise using a dual-channel framework with various auditory
processing constraints such as critical-band filtering, intensity-to-
loudness conversion, and lateral neural inhibition. While previous
single-channel methods such Auto-LSP and CD-Auto-LSP have been
successful in white noise environments, their constraints have not
been specifically formulated to address the changing structure of
colored background noise. Methods such as ACE and adaptive
noise canceling [13] address this via a second reference channel.
In this study, we propose to reformulate the manner by which
spectral constraints are applied within the Auto-LSP enhancement
algorithm to specifically address the nonuniform impact colored
noise will have on degraded speech. As such, when background
noise levels are high, constraints will be tightened, especially in
regions where smooth spectral transitions should take place (i.e.,
voiced transitions from vowels to semivowels). For portions of the
frequency domain where the SNR is high, spectral constraints will
be either relaxed or disabled, since such constraints could alter the
natural spectral structure of speech in these clean regions. This paper
is organized as follows. In Section II, we present details of the
Auto-LSP enhancement algorithm. Next, the noise adaptive Auto-
LSP enhancement algorithm is proposed in Section III, followed by
algorithm evaluations in Section IV. Finally, we draw conclusions in
Section V.

II. A UTO-LSP ENHANCEMENT

The constrained iterative Auto-LSP enhancement approach is based
upon extensions to the two-step maximuma posteriori (MAP)
estimation of the all-pole speech parameters and noise-free speech
formulated by Lim and Oppenheim [7]. In the unconstrained MAP
estimation procedure, thèth frame of speech is modeled by a set of
all-pole linear predictive parameters~a` and gaing`. The estimation
process iterates between two sequential MAP estimations. For the

ith algorithm iteration, the all-pole speech model parameters~̂a
(i)

` are
first obtained from the estimated noise-free speech at the(i � 1)th

iteration, ~̂S
(i�1)

` . In the second step, a MAP estimate of the noise-free

speech is obtained by applying a noncausal Wiener filter to~̂S
(i�1)

` .
Here, the frequency domain filter is constructed using the all-pole

model spectrum described bŷ~a
(i)

` as an estimate of the noise-free
speech power spectrum. The estimation process at theith iteration
can be described by

MAX p ~̂a
(i)

`
~̂S
(i�1)

` ; g` which gives~̂a
(i)

` (1)

MAX p ~̂S
(i)

` ~̂a
(i)

` ; ~̂S
(i�1)

` ; g` which gives ~̂S
(i)

` (2)

where ~̂S
(0)

` represents the original noise-corrupted frame of speech.
The two-step procedure is repeated until ana priori terminating
criterion is satisfied.

In the constrained iterative approach [10], spectral constraints are
applied between MAP estimation steps in order to ensure 1) stability

of the all-pole model, 2) that it possess speech-like characteristics
(e.g., natural formant bandwidths), and 3) to provide frame-to-frame
continuity in vocal tract characteristics. In particular, two types of
spectral constraints known asinterframeand intraframe constraints
are applied to the speech spectrum during the iterative all-pole
parameter estimation. Interframe constraints are applied over time
to the LSP position and difference parameters in order to reduce
frame-to-frame pole jitter and to ensure that the enhanced speech
has speech-like characteristics. For thejth LSP position parameter
computed from thèth frame on theith iteration,p(i)` (j), the spectral
constraint is implemented by smoothing over an adaptive triangular
base of support of width2N(j) + 1 frames,

p̂
(i)
` (j) =

N(j)

k=�N(j)

H(E`; j) � 1�
jkj

W (E`; j)
� p

(i)
`+k(j)

8j = 1; � � � ; 5 (3)

whereH(�) andW (�) represents the smoothing window height and
width which are dependent upon both frame energyE` and LSP
parameter indexj. In addition to LSP position parameter smoothing,
constraints are applied to the LSP difference parameters in order to
ensure that the pole locations do not drift too close to the unit circle
causing unnatural formant bandwidths in the enhanced speech.

The second type of constraint, known as intraframe constraints, are
applied across iterations to the autocorrelation parameters in order
to control the rate of improved estimation for phoneme sections
less sensitive to noise. This relaxation constraint is implemented by
estimating thekth autocorrelation lag as a weighted combination of
the kth lag fromM previous iterations. Specifically

R
(i)
` [k] =

M

m=0

 mR
(i�m)
` [k] (4)

with the condition that M

m=0  m = 1.
The constrained iterative enhancement algorithm was formulated

using an additive white Gaussian noise (WGN) assumption. As such,
the method has been shown to be successful in WGN environments,
with some improvement for colored noise sources as well. In WGN
environments, the incorporation of spectral constraints was shown
to provide a more consistent terminating iteration and improved
objective speech quality over the unconstrained iterative enhancement
method [7].

III. N OISE ADAPTIVE AUTO-LSP ENHANCEMENT

In many real-world settings, such as aircraft cockpit or automobile
environments, the spectral content of the degrading noise is not
flat, but rather concentrated within a small portion of the frequency
spectrum. This may result in only a localized degradation of speech
quality over a finite frequency interval. Furthermore, due to the
time-varying nature of speech, the local SNR across both time and
frequency may differ dramatically from frame-to-frame. In the Auto-
LSP formulation described in Section II, inter- and intraframe spectral
constraints are applied to the speech signal at each iteration regardless
of the spectral content of the noise. In low-frequency distortions,
such as automobile highway noise, it is undesirable to apply spectral
smoothing constraints to regions of high frequency, since this can
reduce the quality of the high SNR spectral components. In theory,
spectral based speech constraints should be selectively applied only
to regions of the speech signal which have been corrupted by noise.
In other words, either a soft-decision or hard-decision is needed to
determine when constraints should be applied.



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 6, NO. 6, NOVEMBER 1998 575

As a consequence, we propose an extension to the Auto-LSP en-
hancement algorithm for colored noise environments by considering
the decomposition of the estimated enhanced speech signal into a
set ofQ frequency subbands. Here, we assume that the degrading
noise will impact each subband differently and hence, the terminating
iteration should be appropriately adjusted for each time-frequency
partition. By reducing the terminating iteration in spectral regions
of high SNR, spectral smoothing is reduced and speech quality
is maintained. In a similar manner, by increasing the terminating
iteration in spectral regions of low SNR, noise attenuation can be
improved. Hence, selecting an appropriate terminating iteration based
on the presence of noise in each signal subband provides a better
compromise between signal distortion and noise attenuation.

In the proposed framework, we consider the speech signal as being
comprised of a set ofQ frequency bands which uniformly partition
the linear frequency scale. The speech signals(n) can be expressed
as the sum of individual subband components

s(n) =

Q

k=1

s(n; k) =

Q

k=1

M �1

m=0

h(m; k)s(n�m) (5)

where s(n; k) represents the time-domain output of thekth filter.
Although in this formulation we assume a uniform bank of band-
pass filters, other filterbank decompositions such as those based on
models of auditory perception could also be used [9], [12]. Using
frame-oriented processing of the subband filtered speechs(n; k), the
algorithm is summarized as follows (n: sample value,̀: frame index,
i: iteration, k: frequency band).

1. Initialization:

a) Decompose thèth degraded speech frame,s`(n), into
subband signal componentss`(n; k). Compute the sig-
nal energy in each subband component

E`(k) =
n

s
2
`(n; k):

b) Estimate average noise energy,Ênoise(k), in each sub-
band fromN most recent frames classified as noise-only
(silence) segments

Ênoise(k) =
1

N

N

j=1

Enf(j)(k)

wherenf(j) represents the index of thejth most recent
frame of noise-only activity.

c) Compute an estimate of thea posteriori SNR (in dB)
for each signal subband

SNR̀ (k) = 10 log10
E`(k)

Ênoise(k)
� 1

where the local SNR in each time-frequency band is
constrained to range from�5 to 25 dB.

d) Assign a terminating iteration,ITER`(k) to each signal
subband “k” and frame “̀ ” based on the local SNR
estimate in each band

ITER`(k) = int (ITERmax � ITERmin)

�
SNRmax � SNR`(k)

SNRmax � SNRmin
+ ITERmin

whereintf�g rounds to the closest integer,SNRmax =
25 dB andSNRmin = �5 dB. ITERmax andITERmin

represent the maximum and minimum terminating iter-
ation allowed in each signal subband.

2. Iterative Estimation:

a) Obtain enhanced speech frame from theith iteration,
ŝ
(i)
` (n), from Auto-LSP.

b) Decomposês(i)` (n) into Q subband components. If the
terminating iteration for the current subband component
equals the current iteration(ITER`(k) = i), then retain
the kth subband component as a final estimate for the
current subband.

c) Repeat (a) to obtain estimate for the(i+ 1)th iteration
until terminating iteration,ITERmax, is reached.

3. Signal Reconstruction:

a) For each frame, sum the retained subband components
from step 2 and recover the enhanced speech frame.

ŝ`(n) =

Q

k=1

ŝ`(n; k)

b) Recover final enhanced speech signal using standard
overlap and add procedure.

In summary, an estimate of the locala posterioriSNR is computed
on a frame-by-frame basis in each signal subband in order to select
a local terminating iteration. For real-time enhancement applications,
the noise energy in each signal subband (and noise power spectral
estimate) can be updated during periods of silence or speaker pause.
Consequently, local SNR estimates will in general depend on the
most recent estimate of the noise energy corrupting each subband.
In this work, we consider a linear relationship between the local
SNR estimate (measured in dB) and terminating iteration selection
and constrain the amount of iterations to range betweenITERmin

to ITERmax within each signal subband. A reasonable value for
ITERmin is one and a reasonable value forITERmax is between
4 and 7. In general, the specific choice of either parameter will
depend on global SNR characteristics of the observed noise-corrupted
speech. We will refer to the proposed algorithm asnoise adaptive
Auto-LSP due to the adaptation of the terminating iteration based
on the presence of noise in each time-frequency signal component.
An overall block diagram of the proposed algorithm is illustrated in
Fig. 1.

IV. A LGORITHM EVALUATIONS

A. Evaluation Data Base and Noise Sources

In order to examine the effectiveness of the proposed algorithm
in a variety of additive noise environments, ten additive noises
summarized in Table I were used for evaluation.2 Aircraft cockpit,
automobile highway, and helicopter fly-by noise are slowly varying
low-frequency distortions. Large city, city in the rain, and large
crowd noise exhibit slowly varying spectral characteristics. IBM PS-2
cooling fan noise is primarily a stationary low-frequency distortion,
while that of the Sun 4/330 Workstation is primarily a stationary
higher-frequency distortion. Furthermore, the cooling fan spectra
include a prominent spectral peak due to the rotation of the fan blades
(approximately 305 Hz for IBM PS-2 cooling fan and 3075 Hz for
Sun cooling fan noise).

2The same noise sources were used for speech recognition
evaluations in [1] and can be obtained from the web address
http://www.ee.duke.edu/Research/Speech/rspl_software.html.



576 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 6, NO. 6, NOVEMBER 1998

Fig. 1. Noise adaptive constrained iterative speech enhancement.

TABLE I
ADDITIVE NOISES CONSIDERED FORENHANCEMENT EVALUATION
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TABLE II
OBJECTIVE SPEECH QUALITY VERSUS SNR FOR ORIGINAL DEGRADED SPEECH (100 8 kHz SAMPLED TIMIT SENTENCES WITH

ADDITIVE NOISE), ENHANCED SPEECH PROCESSED WITHAUTO-LSP AND THE PROPOSEDNOISE ADAPTIVE AUTO-LSP ALGORITHM

B. Evaluation Method

The proposed noise adaptive Auto-LSP enhancement algorithm
was evaluated by adding a controlled level of noise to 100 sentences
extracted from an 8 kHz lowpass filtered version of the TIMIT
data base. For each noise type, global SNR’s of 5, 10, and 15
dB were considered. In this study, objective speech measures [14]
were used for algorithm evaluation. For each degraded utterance, the
Itakura–Saito (IS) likelihood measure was calculated before and after
enhancement processing. The frame-based IS likelihood measure for
a (clean) reference framex� and (noisy) test framexd is given by

dIS(x�; xd) =
+�

��

[eV (�)
� V (�)� 1]

d�

2�
(6)

where

V (�) = log
�2�

jA�(ej�)j2
� log

�2d

jAd(ej�)j2
: (7)

Here,Ad(e
j�) andA�(e

j�) represent the linear prediction analysis
filters for the (noisy) test framexd and (clean) reference framex�. A
measure of global sentence quality was then determined by computing
the average of the frame-based measures across speech-only sections
of each utterance.

For the noise adaptive approach, a total of eight signal subband
components that uniformly partitioned the linear frequency scale
were utilized. Furthermore, the terminating iteration in each signal
subband was constrained to range from one to four iterations. The

Auto-LSP algorithm was terminated at the fourth iteration. This was
found to provide the best overall objective speech quality during
informal experimentation using several additive noise sources. During
enhancement processing, the noise power spectrum was estimated
from the first 880 samples (110 ms) of silence at the beginning of
each utterance. Note that a one-time estimate of the noise was used
since each TIMIT utterance contains approximately 3 s of speech
activity with little or no pause between words.

C. Evaluation Results

Results of the algorithm evaluations are summarized in Table II.
Here, the IS likelihood measure for the original degraded speech,
enhanced speech processed using traditional Auto-LSP, and enhanced
speech processed using the proposed noise adaptive Auto-LSP al-
gorithm is shown. Considering SNR’s ranging from 5 to 15 dB,
we see that both enhancement approaches reduce spectral distortion
and improve objective speech quality (i.e., reduced IS measures
after processing reflect less spectral mismatch). For example, the
mean IS measure for speech degraded with aircraft cockpit noise
at 10 dB SNR is 2.94 before enhancement, 1.24 after Auto-LSP
enhancement, and further reduced to 1.03 using the proposed noise
adaptive Auto-LSP algorithm. Furthermore, we see that the difference
in IS measures between speech processed using Auto-LSP and the
proposed algorithm is most dramatic for colored noises while less
dramatic for noises that are almost spectrally flat. This can be partially
attributed to the ability of the proposed algorithm to adaptively
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TABLE III
OBJECTIVE SPEECH QUALITY VERSUS BROAD PHONEME CLASSIFICATION. HERE, 100 TIMIT SENTENCESWERE DEGRADED WITH ADDITIVE

AIRCRAFT COCKPIT NOISE (10 dB SNR)AND SUBSEQUENTLY ENHANCED USING AUTO-LSP AND NOISE ADAPTIVE AUTO-LSP

TABLE IV
OBJECTIVE SPEECH QUALITY VERSUS BROAD PHONEME CLASSIFICATION. HERE, 100 TIMIT SENTENCESWERE DEGRADED WITH ADDITIVE

AUTOMOBILE HIGHWAY NOISE (10 dB SNR)AND SUBSEQUENTLY ENHANCED USING AUTO-LSP AND NOISE ADAPTIVE AUTO-LSP

adjust the final terminating iteration based on local SNR estimates
obtained in each time-frequency partition. In addition, the terminating
iteration adjustment ensures a relaxation of the spectral smoothing
constraints in regions where the noise corruption is not significant.
More important, however, we note that the proposed algorithm leads
to improved objective speech quality over the original Auto-LSP
formulation for all noises and SNR’s examined.

It is interesting to point out that the noise adaptive Auto-LSP
algorithm leads to further improvements in objective speech quality
for the case of white Gaussian noise. Here the mean IS measure
for 10 dB was 2.67 for the original degraded test set, 1.92 for the
Auto-LSP enhanced, and 1.76 for speech enhanced by the proposed
algorithm. This is not surprising, since Auto-LSP applies a fixed
terminating iteration to all speech frames. Hence, by adapting the
terminating iteration per time-frequency subband, the algorithm is
better able to adapt to the time-varying nature of the speech signal
by reducing the terminating iteration in regions containing negligible
noise corruption while at the same time increasing the terminating
iteration in regions of significant noise corruption. We also found
that both algorithms provided little or no improvement for “city rain”
noise and “large crowd” noise. However, this can be attributed to
both the nonstationarity of the background noise as well as the fact
that a one-time estimate of the noise was used across each sentence
in this set of experiments.

Tables III and IV illustrate specific improvements in objective
speech quality for broad speech classifications in aircraft cockpit
and automobile highway noise conditions. . In each noise condition,
the proposed noise adaptive algorithm further improves objective

quality over the traditional Auto-LSP formulation for each broad
speech class. For example, the mean IS measure for stop consonants
was reduced from 3.90 for the original degraded to 2.06 for the
Auto-LSP enhanced speech. The noise adaptive algorithm further
reduces this measure to 1.60. In general, the proposed algorithm
provides the most improvement for speech classes such as stops and
fricatives. However, for automobile highway noise, there is also a
substantial improvement for vowel sections (e.g., the average IS is
further reduced from 1.96 to 1.27 after processing with the proposed
algorithm).

V. CONCLUSION

The original formulation of the constrained iterative Auto-LSP en-
hancement algorithm proposed by Hansen and Clements [10] focused
on additive WGN interference. In such conditions, the application of
spectral constraints to the LSP parameters and autocorrelation lags of
the degraded speech was shown to provide improved speech quality
and a more consistent terminating criteria. In colored noise conditions,
such as aircraft cockpit and automobile highway environments, the
Auto-LSP algorithm does not provide as much improvement in speech
quality, since spectral constraints are applied to the entire frequency
spectrum regardless of the localized nature of the noise.

In this correspondence, we have formulated a noise adaptive Auto-
LSP enhancement algorithm to provide improved objective speech
quality in colored noise environments. In the proposed algorithm,
we considered the enhanced waveform as being composed of a
sum of it’s individual subband signal estimators. By adapting the
terminating iteration for each time-frequency partition, the proposed
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algorithm was shown to provide a better compromise between signal
distortion and noise attenuation. We considered ten additive noise
sources ranging from highly colored (e.g., automobile highway noise)
to completely flat (e.g., white Gaussian noise) and demonstrated that
the proposed extension to the original constrained iterative algorithm
improves objective speech quality over a wide range of SNR’s.
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Improving Performance of Spectral Subtraction in
Speech Recognition Using a Model for Additive Noise

Nestor Becerra Yoma, Fergus R. McInnes, and Mervyn A. Jack

Abstract—This correspondence addresses the problem of speech recog-
nition with signals corrupted by additive noise at moderate signal-to-noise
ratio (SNR). A model for additive noise is presented and used to compute
the uncertainty about the hidden clean signal so as to weight the
estimation provided by spectral subtraction. Weighted DTW and Viterbi
(HMM) algorithms are tested, and the results show that weighting the
information along the signal can substantially increase the performance
of spectral subtraction, an easily implemented technique, even with a
poor estimation for noise and without using any information about the
speaker. It is also shown that the weighting procedure can reduce the
error rate when cepstral mean normalization is also used to cancel the
convolutional noise.

Index Terms—Additive noise, cepstral mean normalization, convolu-
tional noise, speech recognition, spectral subtraction, weighted matching
algorithms.

I. INTRODUCTION

In [1], a model for additive noise using infinite impulse response
(IIR) filters was proposed and used to compute the uncertainty or
variance related to the spectral subtraction (SS) process to weight the
DP algorithms. However, most recognizers use hidden Markov model
(HMM) structure, and the use of a discrete Fourier transform (DFT)
filterbank is desirable because it makes the system less vulnerable to
the convolutional distortion. The contributions of this paper concern:

1) a model for additive noise for the case of DFT filters;
2) a weighting procedure applicable to dynamic time warping

(DTW) and HMM with SS;
3) comparison between weighted matching algorithms;
4) improvement of SS performance in terms of error rate and

dependence on the threshold parameter;
5) improvement of SS combined with cepstral mean normalization

(CMN) to cancel additive and convolutional noise.

The approach covered in this work has not been found in the
literature and seems to be generic and interesting from the practical
applications point of view.

II. M ODEL FOR ADDITIVE NOISE USING DFT FILTERS

Given thats(i); n(i); andx(i) are the clean speech, the noise and
the resulting noisy signal, respectively, the additiveness condition in
the temporal domain may be set as

x(i) = s(i) + n(i): (1)

In the results presented in this correspondence, the signal was pro-
cessed by 14 DFT mel filters. IfS(k); N(k); andX(k) correspond
to the fast Fourier transform (FFT) ofs(i); n(i); and x(i) at the
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