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Abstract
Studies have shown that the performance of speech recogni-
tion algorithms severely degrade due to the presence of task
and emotional induced stress in adverse conditions. This pa-
per addresses the problem of detecting the presence of stress in
speech by analyzing nonlinear feature characteristics in specific
frequency bands. The framework of the previously derived Tea-
ger Energy Operator(TEO) based feature TEO-CB-AutoEnv is
used. A new detection scheme is proposed based on weighted
TEO features derived from critical bands frequencies. The new
detection framework is evaluated on a military speech corpus
collected in a Soldier of the Quarter (SOQ) paradigm. Heart
rate and blood pressure measurements confirm subjects were
under stress. Using the traditional TEO-CB-AutoEnv feature
with an HMM trained stressed speech classifier, we show error
rates of 22.5% and 13% for stress and neutral speech detection.
With the new weighted sub-band detection scheme, detection
error rates are reduced to 4.7% and 4.6% for stress and neu-
tral detection, a relative error reduction of 79.1% and 64.6%
respectively. Finally we discuss issues related to generation of
stress anchor models and speaker dependency.

1. INTRODUCTION
The problem of detecting stress in speech has been the subject
of a number of studies[1, 2, 3]. However, depending on the type
of emotion or task induced stress condition, reliable detection
of stress, even in clean speech, continues to be a challenging
task. Reliable stress detection requires that a speaker change
their neutral speech production process in a consistent man-
ner so that extracted features can detect and perhaps quantify
the change. Unfortunately, speakers are not always consistent
in how they convey stress or emotion in speech, and therefore
reliable detection typically requires a multi-dimensional solu-
tion. In the past, we have considered a variety of approaches
to detect stress in speech based on pitch structure, duration, in-
tensity, glottal characteristics, and vocal tract spectral structure
using Hidden Markov Models(HMM) or Bayesian Hypothesis
testing[1, 2, 3]. Here, we believe that a multidimensional fea-
ture obtained across a sub-band structure could be successful.
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usly, we have formulated a number of novel nonlinear
features using properties of the Teager Energy Operator.
successful, there remain challenges to ensure consistency
ss detection for a given speaker known to the training set,
ll as independent speakers not included within available
g data.

he ability to detect stress in speech has many applications
ce communications such as increasing the robustness of
h recognition algorithms, military voice applications and
forcement. In this paper, we address the problem of stress
ion using a nonlinear feature set. We assert that speech
ction variability caused by stress in speech should be a
ear phenomenon which has evidence based on nonlinear
s conducted by Teager. Recently, a new feature based on
TEO-CB-AutoEnv [1] was studied and found to be more
sive to stress. Our focus here, is to explore if specific
ncy bands are more sensitive to stress, independent of

er, and whether these bands can be used to more effec-
detect stress in speech. We begin with the introduction of
nlinear feature followed by description of the experimen-
up. We then talk about our new algorithm to ameliorate
detection. In the end we discuss our future work followed
onclusion.

. TEAGER ENERGY OPERATOR
ically, most approaches to speech modeling have taken a
plane wave point of view. While features derived from
nalysis can be effective for speech coding and recogni-
hey are clearly removed from physical speech modeling.
r[5, 6] did extensive research on nonlinear speech model-
d pioneered the importance of analyzing speech signals

an energy point of view. He devised a simple nonlinear,
tracking operator, for a continuous time signal ���� as

s:
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r a discrete-time signal ���� as:

������� � �
����� ���� 	� ���� 	�� (2)

���� is the Teager Energy Operator(TEO). These opera-
ere first introduced systematically by Kaiser[7, 8].
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2.1. TEO-CB-Auto-Env:Critical Band Bases Teo Autocor-
relation Envelope

Having established the discrete time TEO, a later study [13]
produced an AM-FM parameterization(referred to as DESA-1
and DESA-2). These approaches motivate the use of TEO for
general speech modelling.

It has been observed[1] that under stressful conditions, a
speech signal’s fundamental frequency will change and hence
the distribution pattern of pitch harmonics across critical bands
will be different then for speech under neutral conditions.
Therefore, for finer resolution of frequencies, the entire audi-
ble frequency range can be partitioned into many critical bands
[9, 10]. Each critical band possesses a narrow bandwidth,(i.e.,
typically 100-400Hz), thus making this new feature indepen-
dent of the accuracy of median �
 estimation.

2.2. Analysis Across Frequency Bands

We can summarize the feature extraction procedure mathemati-
cally as follows using bandpass filters(BPF) centered at critical
band frequency locations,
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where,
������ � � 	� �� �� ���	
, is the BPF impulse response,
������ � � 	� �� �� ���	
, is the output of each BPF,
“�” is the convolution operator
	
�

���
�

���
�
� is the autocorrelation function of the 
th frame

of the TEO profile from the �th critical band,����
� ����

and, � is the frame length.

Fig.1 shows a flow diagram of the feature extraction pro-
cess. The TEO-CB-AutoEnv feature has been shown to reflect
variations in excitation characteristics including pitch harmon-
ics, due to its finer frequency resolution. However, we believe
that the variation in excitation structure is not uniform across
all the bands. Moreover, we also show that specific frequency
bands are more sensitive to stress and some to neutral, indepen-
dent of speaker, and hence we should be able to detect stress in
speech without the need of a speaker dependent neutral or stress
model as long as there are general reference models.

2.3. EXPERIMENTAL SETUP

2.3.1. Soldier of the Quarter(SOQ) Speech Corpus

A speech under stress corpus was collected at the Walter
Reed Army Institute of Research. The speech corpus was
constructed using the WRAIR Soldier of the Quarter Board
paradigm[11, 12] , by recording the spoken response of 6 in-
dividual soldiers to questions in a neutral setting, as well as
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seated in front of a seven person military evaluation board
ard members had military rank much above the soldier
aced the panel). The SOQ board is a training exercise
competition used to prepare soldiers for actual promo-

oards. Subjects in this study were candidates in the com-
n who volunteered to be studied after giving informed

nt. Table.1 summarizes average speaker conditions for 6
ers and 7 speech data collection phases before (A,B,C),

(D), and after (E,F,G) the Board. Changes in mean heart
R), blood pressure(sBP,dSP) and pitch(f0) all confirm a
e in speaker state between A,B,C,E,F,G and D. Results
m a significant shift in biometric measures from the as-

neutral conditions (A,B,C),(E,F,G), versus the assumed
condition (D). Each soldier was asked to answer all ques-

by responding “The answer to this question is NO”. Each
er was asked the same set of 6 different militarily-relevant
ons on seven occasions. For our evaluations, we focused
vowel ’o’ extracted from the word ’NO’.

Summary Of Mean Biometrics for SOQ subjects
A B C D E F G

Measure
-7Day -20min Board +20min +7day

HR 70.3 70.8 93.2 69.5 67.2
sBP 118 146 178 154 117
dBP 77.5 74.8 89.7 71.2 69.5
�� 103.4 102.7 136.9 104.3 103.1

1: HR - heartrate (in beats per minute), sBP - Systolic
pressure in mm, dBP - Dystolic blood pressure in mm, ��

damental frequency in Hz.

HMM Baseline Classification System

eline Hidden Markov Model(HMM) system was formed
SOQ corpora. Acoustic models consisted of three state
’s each with two Gaussian mixtures. A total of 191 tokens

used for training the neutral model, while 30 tokens were
or training the stress model in a traditional round robin

er. The front-end feature consists of a sixteen dimensional
CB-AutoEnv vector. The speech data obtained during the
Board scenario was assumed to be “Stress” and the re-
ng speech data was grouped together as “Neutral” based
biometric results. Thus, two HMM models termed “Neu-
nd “Stress” result after the training phase. Using the en-
itical band TEO-CB-AutoEnv feature, a round-robin open
classification rate was found to be 22.5% for stress and
or neutral.

HMM for Frequency Band Analysis

equency band analysis, a second HMM classification sys-
as trained with a front-end feature made up of the TEO-
utoEnv of each individual band, forming an independent
. A seperate Neutral and Stress model, was therefore

ucted for every band. In addition to single band neutral
ress models, we also trained models using the first four
(1-4), bands 5-8, and the last four bands(12-16) grouped
er, which we believe will play an important role in dis-
shing between neutral and stress speech. Thus, we have
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Figure 1: Feature Extraction Flow Diagram.



thirty-two single band models, sixteen of which are neutral and
sixteen under stress. We also have six four-band models again
classified in a similar manner.
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TEO−CB−AutoEnv Profile for SOQ Corpus Across Frequency Bands
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Figure 2: Area Under Auto-Correlation Envelope across all 16
Bands.

2.4. EXPERIMENTS

2.4.1. TEO Autocorrelation Envelope Analysis

In this initial experiment, we studied the area under the TEO
autocorrelation envelope across sixteen frequency bands. The
area under the auto-correlation envelope was calculated across
all speakers and averaged for all sixteen bands. Fig.2, shows
average feature profile before the board(A,B,C) and after the
board(E,F,G). The continuous line represents the stress sce-
nario(D).
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Figure 3: Band 12 and 13 Zoomed.

We observed that the area under the autocorrelation enve-
lope for some bands is more distinct for some neutral and stress
models. The TEO-CB-AutoEnv is lower in magnitude for low
and mid-band frequencies (i.e., bands 3,5-7) for stress versus
neutral. To better illustrate the result, band 12 and 13 have been
shown in detail in Fig.3. For band 12,the stress condition D pro-
duced the lowest score, while for band 13 it was largest. These
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Stress & Neutral Speech Classification Per Frequency Band
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ure 4: Stress and Neutral speech Classification Results.

Band Stress Neutral

1 38.09 28.04
2 57.14 22.35
3 57.14 38.99
4 38.09 32.91
5 76.19 13.97
6 66.67 13.97
7 28.57 58.94
8 80.95 14.92
9 80.95 13.07
10 66.67 22.46
11 33.33 62.46
12 23.81 77.54
13 71.43 11.21
14 23.81 67.22
15 42.86 73.84
16 14.29 67.25

1,2,3,4 42.86 15.87
5,6,7,8 47.62 24.15

13,14,15,16 57.14 8.37

2: Percentage Error rate in Stress/Neutral Recognition.

Band Classification Sensitivity towards Neutral & Stress
h

esults so far suggest a frequency sensitive nature for the
CB-AutoEnv feature. Next, we want to determine if some

are consistently more reliable in detecting neutral or
ed speech, and therefore we perform stress classification

each band. Fig.4 shows results for both stressed and neu-
eech classification. We observe that bands 5, 8, 9 and 13
nsitive to neutral speech (i.e., above 85% correct neutral
fication), while bands 7, 12, 14 and 16 are sensitive to
h under stress (i.e., above 70% correct stress classifica-
Individual error rates for stress and neutral speech recog-
are summarized in Table 2. Results are also shown for

ined 1-4, 5-8, and 13-16 band-sets. Clearly, some com-



binations significantly outperform individual frequency bands
for stress speech classification. Moreover we also observe that
bands which are sensitive to stress are complementary to those
sensitive to neutral. Note that all stress classification rates are
based on single phonemes tests using /o/ in word ’no’.

3. NEW FEATURE FOR STRESS
DETECTION

Here, we develop a novel scheme for stress detection based
on the findings from the preceding section. We construct a
weighted band scoring scheme in which each band is weighted,
depending upon its sensitivity to stress or neutral, with the
condition that all weights sum to unity. The weights used in
the formulation were determined experimentally and the same
set of weights were used for all evaluations in their respective
categories (stress or neutral classification). In the future we will
attempt to optimize the weight calculations using optimization
algorithms on a large corpus. The equation below shows how
an overall model score is obtained using stress and neutral
sensitive bands :
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where,
SNB��� �Sensitive Neutral Bands� � � �� �� �� 	�
������ �Sensitive Stress Bands� � � �� 	�� 	�� 	

���� �band ’n’ Weight.

The result of evaluations using the new detection scheme are
shown in Table.3. Using the entire TEO-CB-AutoEnv fre-
quency range for the feature, baseline stress and neutral error
rates are 22.5% and 13%. With results from experiments in sec-
tion 2.4 to establish stress and neutral sensitive bands, the new
weighted algorithm is able to achieve error rates of 4.7% and
4.6% for stress and neutral detection respectively. This corre-
sponds to relative 79.1% reduction in the stress speech detec-
tion error rate, and a 64.6% relative reduction in the neutral
speech detection error rate.

System % Error in Stress % Error in Neutral

Baseline 22.5 13
Weighted CB 4.7 4.6

Table 3: Evaluation using New Detection Scheme

4. DISCUSSION
The resulting weighted TEO-CB-AutoEnv detection scheme
has resulted in a substantial improvement in stress and neutral
speech detection. However, there are a number of important
issues that remain to be addressed. For example, in our evalua-
tions, we trained and tested with a closed speaker population. In
many situations, it is not possible to have prior training data in
both neutral and stressed conditions. Therefore, how well will
models of speech under neutral and stress for a given speaker
group, be applicable to new speakers ? We performed a test us-
ing the present corpus and found neutral detection rates to vary
between 77.7-97.2%. However, because of limited number of
speakers, there was insufficient test data tokens to obtain results
for stressed speech detection for individual open speakers. We
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e that it will be more important to determine performance
ess detection versus neutral detection, since from our ear-
ork [4], we believe there will be more speaker variability

speakers under stress. Another issue to raise is that all
ion experiments were performed on a single vowel. Our
r results suggest more consistent performance using a set

els from complete sentences. We will consider this in the
with a larger speaker corpus. The proposed solution here
l positioned to address the increased speaker question, or
n speaker question, since we have independent weights
quency sensitive bands in stress and neutral conditions.

ssue will also help address the problem of anchor model
uction for new speakers.

5. CONCLUSION
s paper we have proposed a novel algorithm for stressed
h detection.This approach was based on nonlinear analysis
features derived from the Teager Energy Operator(TEO).
h data under a SOQ paradigm obtained from WRAIR, in-
dently showed a statistically significant change in blood
re, heart rate and blood chemical composition between
l and stress conditions. Individual stress detection exper-
s across critical sub-band frequencies showed some bands
more sensitive for stress detection, while others were sen-
to neutral. Objective evaluations showed that this novel
e leads to a substantial improvement in stress detection
mance. We also discussed issues related to generation of
anchor models and speaker dependency, however further
tions will be needed on a larger population to determine
ss and neutral speech detection performance will hold for
n speakers.
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