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Abstract
It is well known that MFCC based speaker identification (SID) sys-
tems easily break down under mismatched training and test condi-
tions. In this paper, we report on a study that considers four differ-
ent single-channel speech enhancement front-ends for robust SID
under such conditions. Speech files from the YOHO database are
corrupted with four types of noise including babble, car, factory, and
white Gaussian at five SNR levels (0–20 dB), and processed using
four speech enhancement techniques representing distinct classes of
algorithms: spectral subtraction, statistical model-based, subspace,
and Wiener filtering. Both processed and unprocessed files are sub-
mitted to a SID system trained on clean data. In addition, a new set
of acoustic feature parameters based on Hilbert envelope of gam-
matone filterbank outputs are proposed and evaluated for SID task.
Experimental results indicate that: (i) depending on the noise type
and SNR level, the enhancement front-ends may help or hurt SID
performance, (ii) the proposed feature significantly achieves higher
SID accuracy compared to MFCCs under mismatched conditions.

Index Terms: feature extraction, gammatone filterbank, Hilbert en-
velope, speaker identification, speech enhancement

1. Introduction
Performance of automatic speaker identification (SID) systems is
severely degraded when an acoustic mismatch happens between
training and test stages. One such mismatch could occur when
the system is trained on data collected under laboratory condi-
tions while test data are acquired in real environments where dif-
ferent noise sources are active (e.g., in a car). These noise sources
can mask/obscure useful acoustic cues by which SID systems are
learned to identify speakers.

Several compensation techniques have been proposed in the lit-
erature to alleviating the adverse effect of environmental noise on
performance of SID engines, most of which were first developed for
noise-robust automatic speech recognition (ASR) [1]. Despite its
simplicity, spectral subtraction has been shown to be effective as a
pre-processing stage in mitigating the impact of mismatch between
training and test conditions due to additive noise [2], [3], although
the noise was assumed stationary or of slowly varying nature. Mul-
tichannel (e.g., microphone arrays) speech processing techniques
have also been employed to provide robustness for SID systems in
the presence of ambient noise [4], [5]. However, this imposes addi-
tional hardware requirements and more complexity on SID systems,
and is not applicable in cases where only a single-channel signal
(e.g., telephone) or prerecorded mono speech data is available.

Assuming a priori knowledge of statistical model of noise, par-
allel model combination (PMC) has been successfully applied for
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noise compensation [6], [7]. Missing feature theory has opened
new avenues for noise-robust speech systems including SID, by dis-
carding the unreliable portion of data which is severely corrupted
by noise, and taking into account only the reliable data (assuming
partial-band noise corruption) for likelihood calculations [3], [8].
To generalize this for unknown full-band noise corruption, in [9]
a combination of multi-condition training and the missing feature
theory was adopted and shown to be superior to the baseline system
trained on clean data, albeit at the expense of introducing a more
complex system.

Another way of dealing with mismatched conditions in SID
is to design acoustic features that are less affected by background
noise. Although originally designed to represent acoustic spaces of
different phonemes for ASR, MFCCs have been the most widely
used features for SID tasks, probably because they provide accept-
able identification accuracy under matched conditions. Also, this
makes it possible to easily integrate SID and ASR systems. Never-
theless, it is well known that MFCC based systems are susceptible
to training and test mismatch, and this has motivated extensive re-
search effort to find more robust acoustic features capable of cap-
turing speaker identity conveyed in the speech signal. In particular,
feature parameters obtained from the temporal envelope of speech
analyzed using a gammatone filterbank have shown promise for SID
tasks under mismatched conditions [8], [10], and [11].

In this study, we consider four different single-channel speech
enhancement front-ends for noise compensation in a GMM based
SID system [12], under additive noise mismatched conditions.
These front-ends represent distinct classes of enhancement algo-
rithms including spectral subtraction, statistical model-based, sub-
space, and Wiener filtering. Speech and noise materials are obtained
from the YOHO [13] and NOISEX-92 [14] databases, respectively.
Four noisy test conditions at five different SNR levels (0–20 dB)
are employed to carry out the experiments. In addition, a new set of
acoustic feature parameters based on the Hilbert envelope of gam-
matone filterbank outputs are proposed and benchmarked against
MFCCs for the SID task under mismatched conditions.

2. Speech enhancement front-ends
Table 1 lists four speech enhancement algorithms employed in
this study as pre-processing stage for SID to suppress background
noise. These methods represent distinct classes of enhancement al-
gorithms including spectral subtraction (SS) [15], statistical model-
based (MMSE) [16], subspace (pKLT) [18], and Wiener filtering
[17]. The first three algorithms provide an estimate of clean speech
magnitude or power spectrum in the short-time Fourier transform
(STFT) domain from the available noisy speech spectrum, given
that an estimate of the noise spectrum is available. On the other
hand, as a perceptually motivated subspace method, pKLT uses the
well-known KL transform in conjunction with an auditory model to
decompose the noisy speech vector into a signal-plus-noise, as well
as a noise subspace, and the clean speech vector is estimated after
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Table 1: Single-channel speech enhancement front-ends evaluated
for SID under additive noise mismatched conditions.

Algorithm Equations/Parameters Ref

SS (3, 4) / β = 0.05 [15]

MMSE (7, 30, 51) / q = 0.2, α = 0.98 [16]

Wiener (4-6, 8) / β = λ = 0.98 [17]

pKLT (34) / ν = 0.08 [18]

removing the noise subspace. Although all these methods are ca-
pable of suppressing background noise, their performance is highly
dependent on the accuracy of the noise spectrum estimate. This
causes the performance to be a trade-off between noise and speech
distortion, and we are interested in investigating the impact of such
a trade-off on SID performance under mismatched additive noise
conditions.

Also given in the table are equations and their respective pa-
rameters from the references used for implementing the enhance-
ment algorithms. Frames of 32 ms duration with 50% overlap are
used for speech analysis. An initial estimate of noise statistics are
obtained from the first 100 ms of each speech signal, and then up-
dated during the enhancement process from speech-absent regions
found by voice activity detection (VAD). For the first three meth-
ods, a statistical model-based VAD [19] with a threshold parameter
η = 1.2 is used, while for the pKLT a different VAD approach is
taken (for more details see [20]). Other implementation details for
all the algorithms are well documented in the corresponding refer-
ences and literature and used as is in this study.

3. Mean Hilbert envelope coefficients
In this section, the procedure for extracting a new set of acoustic
feature parameters for robust SID under mismatched conditions is
described.

The block diagram of the proposed feature extraction scheme
is depicted in Fig. 1. First, preemphasized speech signal s(n)
is filtered using a 32-channel gammatone filterbank to simulate
the effect of auditory filtering which takes place in the cochlea
[21]. The filterbank center frequencies are uniformly spaced on
equivalent rectangular bandwidth (ERB) scale between 50 and
4000 Hz (assuming a sampling rate of Fs = 8 kHz). Next, the
temporal envelope of jth channel output s(n, j) is computed as the
magnitude of analytical signal obtained using the Hilbert transform.
More specifically, let

sa(n, j) = s(n, j) + iŝ(n, j), (1)

denote the analytical signal, where ŝ(n, j) is the Hilbert transform
of s(n, j), and i is the imaginary unit. The temporal envelope
e(n, j) is thus calculated as,

e(n, j) =
√

s2(n, j) + ŝ2(n, j) . (2)

e(n, j) is also called the Hilbert envelope of the signal s(n, j).
In the next stage, the Hilbert envelope e(n, j) is blocked into
non-overlapping frames of 10 ms duration. A Hamming window is
applied to each frame to minimize the discontinuities at the edges.
To estimate the temporal envelope amplitude in frame t, the sample
means are computed as,

E(t, j) =
1

N

N−1∑

n=0

w(n)e(n, j) , (3)

where w(n) denotes the Hamming window and N is the frame
size in samples. To compress the dynamic range of the envelope
amplitude E(t, j), the natural logarithm is applied. Note that

Elog(t, j) is a measure of energy in jth channel at time frame t.
Furthermore, by the duality between time and frequency, it is also a
measure of spectral energy at the center frequency of jth channel.
These energy features are normalized in each channel by the mean
obtained from a long-term average of the spectral energies in that
channel as,

En(t, j) =
Elog(t, j)

1
T

∑T
t=1 Elog(t, j)

, (4)

with T being the total number of frames. Finally, the discrete co-
sine transform (DCT) is applied to decorrelate different feature di-
mensions. This is important because GMMs with diagonal covari-
ance matrices can then be used to model the acoustic space of each
speaker (as opposed to full covariance matrices). The output is a
matrix of 32-dimensional spectral features, entitled mean Hilbert
envelope coefficients (MHEC).

Since En(t, j)’s represent spectral energies in different fre-
quency bands, spectrogram-like representations can be made. Fig. 2
demonstrates sample speech spectra across time frames for a clean
signal (left), and the same signal corrupted with car noise at 0 dB
(right). Top panels have been obtained from STFT analysis in the
linear frequency domain, middle panels from En(t, j)’s, and bot-
tom panels from STFT analysis and mel-band integration in 27 fre-
quency bins. As seen in the figure, the most striking feature of the
new signal representation compared to the representation obtained
from mel-band integration is that it is less susceptible to the addi-
tive noise, and there is a smaller mismatch between the clean and
noisy spectra. Therefore, it is expected that higher SID rates can be
achieved using MHECs under mismatched conditions.

4. Experiments
To simulate different noisy conditions, noise samples obtained from
the NOISEX-92 database are artificially added to speech signals.
First, the active speech level of clean signals are determined us-
ing method B described in [22] (no IRS filtering is applied). Next, a
random segment of the same length as the speech signal is extracted
from the noise recordings, appropriately scaled to reach the desired
SNR level, and finally added to the clean signal. This is realized us-
ing the Filtering and Noise Adding Tool (FaNT) [23]. Four different
noise samples including babble, car, factory, and white Gaussian are
considered and added to clean signals at five SNR levels in the range
0–20 dB.

MFCCs are extracted from frames of 25 ms duration at a frame
rate of 100 Hz . Out of 27 filterbank log-energies, the first 12 co-
efficients are retained after applying the DCT (excluding c0), and
delta features are appended to form a 24-dimensional feature vector
for each frame. Cepstral mean normalization (CMN) is applied to
provide robustness against possible session variability in speakers.
MHECs are obtained using the procedure described in Section 3.
A 62-dimensional feature vector is formed by appending the delta
features and excluding the energy term.

Two 64-mixture GMM based SID systems (one per feature
type) are trained on all 96 clean enrollment utterances of the first 69
speakers (including 12 female and 57 male speakers) in the YOHO
database. An energy-based thresholding algorithm is adopted for
silence frame removal. All 40 verification utterances are used for
subsequent evaluations.

5. Results
Fig. 3 represents identification rates obtained by the two GMM
based SID systems under clean and four different noisy test con-
ditions at 5 SNRs covering 0–20 dB range, and for un-processed
(UN) and processed test materials. Identification accuracies for
MFCCs and MHECs under clean matched condition are 99.82%
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Figure 1: Block diagram of the proposed feature extraction scheme

Figure 2: Sample speech spectrum for: clean signal (the phrase “41-34-23”) (left), and signal degraded with car noise at 0 dB (right),
obtained from: STFT in linear frequency domain (top), mean of the Hilbert envelope of gammatone filterbank outputs (middle), STFT and
mel-band integration (bottom).

and 99.28%, respectively. It is observed that except for the white
noise case, the enhancement front-ends provide no improvement in
SID accuracy when the SNR is relatively high (15–20 dB). Also, ex-
cept for the babble noise case, both the SS and MMSE algorithms
boost the performance when the SNR is relatively low (10 dB and
below). In general, the Wiener and pKLT algorithms performances
are the worst. Clearly, the SID system trained on MHECs performs
consistently the best across all the mismatched conditions. In par-
ticular, while the SID accuracy of the system trained on MFCCs
drops dramatically as the SNR level decreases for the test condi-
tion under car noise, the system trained on MHECs exhibits almost
no decline in identification rate. As discussed in Section 3, this is
due to the fact that MFCCs are easily affected by the additive noise
while MHECs are more robust to a change in the SNR level of the
input signal.

Fig. 4 shows performances of the two systems in clean and
four noisy conditions averaged across SNR range 5–20 dB, for un-
processed (UN) as well as processed test materials using the four
enhancement front-ends. It is seen that on average MHECs yield
higher SID accuracy over all test conditions, and the SS algorithm
performs the best in suppressing background noise, thus compensat-
ing the mismatch between training and test conditions. Comparing
the performance evaluation of different enhancement front-ends in
terms of SID accuracy with the evaluation results reported in [20]
in terms of intelligibility, reveals that enhancement algorithms that
introduce lesser speech distortion provide more improvement in ac-
curacy, (i.e., the SS and MMSE). For instance, in [20] it was shown
that the pKLT is very successful in suppressing background noise,
however, at the expense of introducing large amounts of signal dis-
tortion. Therefore, it can be concluded that the SID systems pay
more attention to signal distortion rather than perceived noise dis-
tortion, i.e., musical noise.

6. Conclusions
This study has considered four distinct speech enhancement front-
ends (SS, MMSE, WIN, pKLT) for noise suppression in SID sys-
tems under mismatched conditions due to additive noise. It was
shown that the SS is the most successful among the four methods in
mitigating the effect of mismatch on the performance of SID sys-
tems, especially at relatively low SNR levels (10 dB and below). It
was also observed that the SID systems pay more attention to the
signal distortion rather than the noise distortion introduced by the
front-ends. In addition, a new set of acoustic feature parameters
based on the Hilbert envelope of gammatone filterbank outputs was
proposed and shown to be superior to MFCCs in performance under
mismatched training and test conditions, while providing almost the
same SID accuracy under clean matched conditions.
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