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Abstract 

Speech production variations due to perceptually induced stress contribute significantly to reduced speech processing 
performance. One approach for assessment of production variations due to stress is to formulate an objective classification of 
speaker stress based upon the acoustic speech signal. This study proposes an algorithm for estimation of the probability of 
perceptually induced stress. It is suggested that the resulting stress score could be integrated into robust speech processing 
algorithms to improve robustness in adverse conditions. First, results from a previous stress classification study are 
employed to motivate selection of a targeted set of speech features on a per phoneme and stress group level. Analysis of 
articulatory, excitation and cepstral based features is conducted using a previously established stressed speech database 
(Speech Under Simulated and Actual Stress (SUSAS)). Stress sensitive targeted feature sets are then selected across ten 
stress conditions (including Apache helicopter cockpit, Angry, Clear, Lombard effect, Loud, etc.) and incorporated into a 
new targeted neural network stress classifier. Second, the targeted feature stress classification system is then evaluated and 
shown to achieve closed speaker, open token classification rates of 91.0%. Finally, the proposed stress classification 
algorithm is incorporated into a stress directed speech recognition system, where separate hidden Markov model recognizers 
are trained for each stress condition. An improvement of + 10.1% and + 15.4% over conventionally trained neutral and 
multi-style trained recognizers is demonstrated using the new stress directed recognition approach. 

Zusammenfassung 

Variation der Sprachproduktion wegen Stress und Rauschen tragen stark zu einer Verminderung der Sprachverar- 
beitungsleistung bei. Ein Ansatz zur Betrachtung von Produktionsvariationen wegen Stress ist, eine objektive Klassifikation 
von Spracherstress, basierend auf akustischen Sprachsignalen, vorzunehmen. Diese Untersuchung schllgt einen Algorithmus 
zur Abschatzung des induzierten Stress vor. Es wird vorgeschlagen, die resultierende Stressquelle in robuste Sprachverar- 
beitungsalgorithmen zu integrieren, urn die Robustheit zu erhdhen. Zunlchst werden die Ergebnisse einer frliheren 
Stressklassifikationsstudie einbezogen und vorgestellt, urn die Wahl der Zielmenge von Spracheigenschaften auf einer 
Stressgruppenebene zu motivieren. Eine Analyse von Artikulation und Aussprache-Eigenschaften wird durchgefuhrt unter 
Verwendung einer bereits friiher aufgestellten Sprachdatenbank (Speech Under Simulated and Actual Stress (SUSAS)). Die 
stresssensitiven Zieleigenschaften werden dann aus einer Menge von 10 Stressumgebungen (eingeschlossen Apache 
Helikopter Cockpit, wiitend, klur, Lombard Effekt, hut, etc.) ausgew’ahlt und in ein neues stressklassifizierendes neuronales 
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Netzwerk integriert. Das betrachtete Stressklassifikationssystem wird dann ausgewerted und es wird gezeigt, dass 
geschlossene Sprecher, offene Tokenklassifikationsraten von 91.0% erreicht werden. Zum Schluss wird der vorgeschlagene 
Stressklassifikationsalgorithmus eingebaut in ein auf Stress ausgerichtetes Spracherkennungssystem, in dem separate 
versteckte Markov Model1 Erkenner trainiert werden fur jede Stresssituation. Eine Verbesserung von + 10% und + 15.4% 
gegeniiber konventionell trainierten neutralen und multi-style trainierten Erkennern wird durch Verwendung dieses neuen 
stressgerichteten Ansatzes erreicht. 

R&urn6 

Les variations dans la production de parole dues au stress induit contribuent de mar&e significative 5 la reduction des 
performances des systemes de traitement de parole. Pour estimer ces variations, une approche consiste ‘a Ctablir une 
classification objective du stress du locuteur, basee sur le signal acoustique. Cette etude propose un algorithme pour 
l’estimation de la probabilite du stress induit. Le taux de stress predit par cet algorithme peut &tre integre dans des 
algorithmes de traitement de parole afin d’augmenter leur robustesse dans des environnements difficiles. Les resultats d’une 
etude precedente sur la classification du stress sont d’abord utilises pour selectionner un ensemble de parametres de parole 
relatifs au phon&me et au type de stress. Une analyse des parametres articulatoires, d’excitation et cepstraux est conduite sur 
une base de don&es de parole sous stress (“Speech Under Simulated and Actual Stress” (SUSAS)). Les parametres 
sensibles au stress sont ensuite sClectionnCs pour dix conditions de stress (incluant le cockpit d’un helicoptere Apache, la 

col&e, la parole Claire, l’effet Lombard, la voix forte, etc.) et sont incorpores dans un reseau de neurones appris pour 
classifier le degre de stress. Dans une deuxieme partie, le systeme de classification du stress base sur les parametres 
prCcCdents est CvaluC. Sur un ensemble fermC de locuteurs et pour un ensemble ouvert de stimuli de parole, il produit un 
taux de bonne classification de 91.0%. Finalement, l’algorithme de classification du stress est incorpore dans un systeme de 
reconnaissance de parole ou un mod&le de Markov est appris pour chaque condition de stress. Avec cette nouvelle approche 
de reconnaissance “dependante du stress”, on obtient une amelioration des performances de 10.1% et de 15.4%, 
respectivement, par rapport aux systemes de reconnaissance appris avec de la parole neutre et avec differents styles de 
parole. 

1. Introduction 

The problem of speaker stress classification is to 
assess the degree to which a specific stress condition 
is present in a speech utterance. “Stress” in this 
study refers to perceptually induced variations on the 
production of speech. Past research studies indicate 
that it is difficult to quantify these variations. The 
change in speech production due to stress can be 
substantial, and will therefore have a direct impact 
upon the performance of speech processing applica- 
tions if not addressed (Womack and Hansen, 1995). 
A number of studies in the past have been performed 
on analysis of speech under stress in an effort to 
identify meaningful relayers of stress (Lieberman 
and Michaels, 1962; Simonov and Frolov, 1977; 
Williams and Stevens, 1972). Unfortunately, many 
research findings at times disagree, due in part to the 
variation in the experimental design protocol em- 
ployed to induce stressed speech, and to differences 
in how speakers impart stress in their speech produc- 

tion. Past research experience suggests that no sim- 
ple relationship exists to describe these changes 
(Hansen, 1988, 1995b; Hansen and Womack, 1996). 

Though a number of studies have considered anal- 
ysis of speech under stress, the problem of stressed 
speech classification has received little if any atten- 
tion in the literature. One exception is a study on 
detection of stressed speech using a parameterized 
response obtained from the Teager nonlinear energy 
operator (Cairns and Hansen, 1994). Previous studies 
directed specifically at robust speech recognition dif- 
fer in that they estimate intraspeaker variations via 
speaker adaptation, front-end stress compensation, or 
wider domain training sets. While speaker adaptation 
techniques can address the variation across speaker 
groups under neutral conditions, they are not in 
general capable of addressing the variations exhib- 
ited by a given speaker under stressed conditions. 
Front-end stress compensation techniques such as 
MCE-ACC (Hansen, 1994) employ adaptive cepstral 
compensation with morphologically constrained fea- 
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ture enhancement to improve recognition perfor- 
mance. Finally, larger training sets have been consid- 
ered for stressed speech in the training phase. Most 
notably, the multistyle training algorithm (Lippmann 
et al., 1987) has shown performance improvement 
for speaker dependent systems. An extension of 
multistyle training based on stress token generation 
from neutral training data has also shown improve- 
ment in stressed speech recognition (Hansen and 
Bou-Ghazale, 1995). However, for speaker indepen- 
dent systems, it has been shown that multi-style 
training results in a loss of performance over a 
neutral trained system (Womack and Hansen, 1995). 
The cause of this is believed to be due to additional 
stress related inter-speaker feature variations which 
the recognition models must now represent, resulting 
in a decrease in the ability to discriminate between 
words. 

system could provide meaningful information to 
speech algorithms for recognition, speaker verifica- 
tion, synthesis and coding. 

The main focus of this study is to formulate a 
stress classification system as shown in Fig. 1. This 
general stress classification system assumes that in- 
put speech is parsed by phoneme class. With knowl- 
edge of the phone class, a set of stress differentiating 
targeted features could be formulated that is better 
able to detect stress characteristics. Next, a high 
level classifier could determine whether the input 
speech is spoken under perceptually or physio- 
logically induced stress. Finally, a codebook of clas- 
sifiers could detect each of the specific stress condi- 
tions under evaluation. In this study, phoneme group 
partitioning, targeted feature extraction and perceptu- 
ally induced stress classifiers are evaluated as part of 
this theoretical system. 

For the problem of stress classification, there are Before venturing into the formulation of a stressed 
two major application areas: objective stress assess- speech classification algorithm, it would be useful to 
ment and improved speech processing. Objective identify areas where speech processing research has 
stress assessment is applicable to stressed speech centered on speech under stress. The effects of stress 
token generation and stress detection applications. have been indirectly addressed by formulating a 
For example, a stress detector could direct highly more accurate speech production representation of 
emotional telephone calls to a priority operator at a intra-speaker variability for the speaker identification 
metropolitan emergency service. Speaker stress as- (Soong and Rosenberg, 1988) and speech recognition 
sessment is useful for applications such as emer- (Lee and Tsoi, 1995) problems. Stressed speech 
gency telephone message sorting and aircraft voice analysis has yielded better modeling approaches for 
communications monitoring. A stress classification speech production which have been successfully ap- 

PHONEME GROUP 
PARTITIONING 

SPEECH 
DATA 

FEATURE 
EXTRACTION 

STRESS SCORING 

r----------- 
; _ !EFE_PTyL_ _ 1 

EYOTlON TASK I 
- - 

AFRAID APACHE 1 
ANGRY 
HAPPY 

LOMBARD , 
LOUD 

NEUTRAL SOFT 

CONTEXT TEMPO 

I-- CLEAR 
1 QUESTlON 

FAST 
SLOW 

l____________l 

r---- ----7 
PHYSIOLOGICAL 1 

;____--I 

I AIR DENSITY 1 

I CHEMICAL 

I G-FORCE I 

I 
VIBRATION I 

---------A 

Fig. 1. Stress classification formulation. 

STRESS 
MIXTURE 
SCORE 

VECTOR 



134 B.D. Womack, J.H.L. Hansen/Speech Communication 20 (1996) 131-150 

plied to improve speech recognition performance 
(Hansen, 1995a; Hansen and Clements, 1995; Wom- 
ack and Hansen, 1995, 1996). The incorporation of 
stressed speech modeling into speech processing al- 
gorithms has been applied previously to improve the 
performance of recognition systems (Hansen, 1995a; 
Lippmann et al., 1987; Womack and Hansen, 1995). 
Stress conditions considered in these studies include 
perceptually induced stress such as Lombard effect 
or task workload (e.g., computer response tasks, 
F-16 fighter pilot stressed speech (Stanton et al., 
1989)). In another study, a novel stress equalization 
scheme was formulated using a tandem neural net- 
work and hidden Markov model recognition system 
which was shown to be effective for keyword recog- 
nition under several stress conditions including Lom- 
bard effect (Clary and Hansen, 1992). The modeling 
framework for the present study is based upon a 
source generator framework, which allows for direct 
modeling of stress perturbation within a multidimen- 
sional feature space (Hansen, 1993, 1994; Hansen et 
al., 1994). In order to reveal the underlying nature of 
speech production under stress, an extensive evalua- 
tion of five speech production feature domains in- 
cluding glottal spectrum, pitch, duration, intensity 
and vocal tract spectral structure was previously 
conducted (Hansen, 1988, 1995b). Extensive statisti- 
cal assessment of over 200 parameters for simulated 
and actual speech under stress suggests that stress 
classification based upon the separability of feature 
distribution characteristics is possible. 

In this study, the problem of classification of 
speech under stress is addressed. Since stress can 
influence a variety of factors in speech production 
(i.e., physical production, speaker rate, word selec- 
tion, sentence construction, etc.), the focus here is 
only on isolated words and stress exhibited from an 
overall perspective on a limited male speaker set. 
The first phase of this study requires that speech 
production, analysis and recognition features be ana- 
lyzed with respect to their ability to differentiate 
speaker stress (Section 2). Given this knowledge, a 
set of targeted feature sets is determined, and em- 
ployed in the formulation of a neural network based 
stress classification algorithm (Section 3). Next, in 
Section 4, the stress classification algorithm is evalu- 
ated using a speech under stress database (SUSAS) 
for (i) feature targeting, (ii) stress classification, and 

(iii) speech recognition. Finally, conclusions are 
summarized in Section 5. 

2. Classification features for stressed speech 

Before embarking on our study of stressed speech 
classification features, it may be useful to distinctly 
define stress in our context. Stress can be defined as 
any condition which causes a speaker to vary their 
production of speech from neutral conditions. Neu- 

tral speech is defined as speech produced assuming 
that the speaker is in a “quiet room” with no task 
obligations. With this definition, two stress effect 
areas emerge: perceptual and physiological. Percep- 
tually induced stress results when a speaker per- 
ceives their environment to be different from “nor- 
mal” such that their intention to produce speech 
varies from Neutral conditions. The causes of per- 
ceptually induced stress include emotion, environ- 
mental noise (i.e., Lombard effect (Junqua, 1993; 
Lombard, 1911)) and actual task workload (e.g., a 
pilot in an aircraft cockpit). Physiologically induced 
stress is the result of a physical impact on the human 
body which results in deviations from neutral speech 
production despite intentions. Causes of physio- 
logical stress can include vibration, G-force, drug 
interactions, sickness and air density. In this study, 
the following ten perceptually induced stress condi- 
tions from the SUSAS database are considered: An- 

gry, Apache, Clear, Fast, Lombard, Loud, Neutral, 
Question, Slow, Soft. 

In order to formulate algorithms for stress classifi- 

cation, it would be useful to consider the type of 
speech production variations that occur in response 
to perceptually induced speaker stress. It is hypothe- 
sized that better stress classification performance can 
be achieved by characterizing stress induced produc- 
tion variations for each stress and phoneme group; so 
that stress sensitive feature sets may be selected. 
Previous studies have considered features from 
speech production domains such as pitch, duration, 
intensity, glottal source effects, and vocal tract spec- 
trum. In this study, the focus is upon features derived 
from speech produced in the following three do- 
mains: (i) articulatory, (ii) excitation and (iii) cep- 
stral. To accomplish this, it is assumed that the input 
speech has been parsed consistently by phoneme 
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group using a previously established phone class 
parser (Pellom and Hansen, 1996). The input speech 
under test is therefore automatically parsed and la- 
beled (details on the parsing algorithm are presented 
in Section 3.1) using the following seven phoneme 
groups: SI: Silence, FR: Fricatives, VL: Vowels, AF: 
Affricates, NA: Nasals, SV: Semi-Vowels, and DT: 
Diphthongs. Speech features are then extracted in 
order to investigate the ability to perform stress 
classification across different partitioning levels. 
Frame-level features include articulatory, excitation 
and spectral characteristics of the speech signal. 
Partition-level features are used to provide statistics 
of the frame-level features over an entire partition. 
Finally, word-level features incorporate broad as- 
pects of the word. 

2.1. SVSAS speech database 

The evaluations conducted in this study employ 
data previously collected for analysis and algorithm 
formulation of speech under stress and noise. This 
database, called SUSAS, refers to Speech Under 

Simulated and Actual Stress, and has been employed 
extensively in the study of how speech production 
varies when speaking during stressed conditions. 
SUSAS consists of five domains, encompassing a 
wide variety of stresses and emotions. A total of 44 
speakers (14 female, 30 male), with ages ranging 
from 22 to 76 were employed to generate in excess 
of 16,000 utterances. The five stress domains include 
(i) psychiatric analysis data (speech under depres- 
sion, fear, anxiety), (ii) talking styles 3 (Angry, 
Clear, Fast, Loud, Slow, Soft), (iii> single tracking 
task (mild task CondSO, high task Cond70 computer 
response workload) or speech produced in noise 
(Lombard effect), (iv) dual tracking computer re- 
sponse task, and (v) subject motion-fear tasks (G- 
force, Lombard effect, noise, fear). The database 
offers a unique advantage for analysis and design of 
speech processing algorithms in that both simulated 
and actual stressed speech are available. A common 
vocabulary set of 35 aircraft communication words 

’ Approximately half of SUSAS consists of style data donated 

by Lincoln Laboratories (Lippmann et al., 1987). 

make up over 95% of the database. These words 
consist of mono- and multi-syllabic words which are 
highly confuseable. Examples include /go-oh-no/, 
/wide-white/ and /six-fix/. A more complete 
discussion of SUSAS can be found in the literature 
(Hansen, 1994, 1995b). 

The SUSAS speech employed in this study con- 
sists of a thirty-five word aircraft vocabulary from 
nine male speakers under simulated stress and two 
male speakers under actual stress. Simulated stressed 
speech conditions considered include Angry, Clear, 

Fast, Lombard, Loud, Question, Slow, Soft speech. 
Actual stressed speech conditions considered include 
Apache helicopter cockpit speech during warmup on 
a runway and in flight. 

2.2. Feature targeting methodology 

In a previous study (Womack and Hansen, 1995), 
articulatory, excitation and cepstral based feature 
domains were considered for application to stress 
classification. A master feature set was created from 
which subsets of targeted features could be selected. 
This selection was based on a separability distance 
measure and feature ranking using statistical and 
subjective measures. In the present study, a subset of 
these features is selected for each phoneme group 
and stress condition in order to formulate a targeted 
feature stress detection system. Next, the resulting 
codebook of stress detectors (i.e., across each phone 
group and stress condition) are combined to form the 
overall stress classification algorithm. 

In order to rank order the set of speech features 
for stress classification, a performance criterion is 
needed. Here, the term “good” or “useful” is used 
to describe how reliable a feature is for stress detec- 
tion using a feature separability score. The remainder 
of this section describes a feature ranking system. 
The process of feature targeting for each stress con- 
dition and phoneme group requires three stages: (i) 
feature differentiability across stress conditions, (ii) 
compilation of the best features for each stress condi- 
tion, and (iii) compilation of the best features for a 
combined phoneme group and stress condition. 

A feature’s ability to differentiate stress condi- 
tions is graded (A, B or C) based upon how well a 
single feature is capable of distinguishing one or 
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more stress conditions. In order to achieve the A 
ranking, a feature must be able to clearly differenti- 
ate (implies separable) more than two stress condi- 
tions for a given phoneme group. This decision is 
based upon analysis of the statistical distribution of 
the feature for each stress condition across multiple 
speakers and utterances for a given phoneme group. 
A C ranking indicates that a selected feature can 
detect at least one stress condition. Note that a B 
ranking is subjectively placed between the A and C 
rankings. The ranking “-” denotes a feature with 
little if any stress separability. Next, these feature 
rankings are employed to target subsets of features 
(those with A and B rankings only) for each stress 
condition and phoneme group. 

2.3. Articulatory based features 

The first classifier feature domain considered is 
the parameterized cross-sectional area of the speech 
production system. These features are considered 
since it is believed that physical speech production 
variations due to stress will be reflected in vocal 
tract articulator variation, and therefore should be 
represented in the formulation of a stress classifica- 
tion algorithm. Articulatory vocal tract information is 
estimated from the acoustic speech signal using a 
single portion of data which is typically 4-32 ms in 
duration. Previous articulatory studies have illus- 
trated methods by which to estimate the vocal tract 
configuration based on the acoustic speech signal 

VOWEL /EH/ IN THE WORD “HELP” 

NEUTRAL ANGRY CLEAR LOMBARD 

ARTICULATORY CROSS-SECTIONAL AREAS Ai 

ARTICULATORY AREA RATIOS Ri 

TIME 

Fig. 2. Vocal tract structure variation for Neutral, Angry, Clear, Lombard 
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(Kobayashi et al., 1991). In another study, the Dis- 
tinctive Regions Model (DRM) was proposed for 
calculation of vocal tract shape from the acoustic 
speech signal (Mrayati et al., 1988). This method 

divides the vocal tract into eight regions, and im- 
poses continuity constraints for adjacent acoustic 
sections (Richards et al., 1995). In a manner em- 
ployed for the DRM, it is assumed that a restricted 
push/pull relationship exists between acoustic sec- 

tions in the vocal tract (e.g., if the tongue moves 
forward and up, it cannot also move backward and 
down). 

In order to illustrate vocal tract variation of speech 

produced under stress, cross-sectional vocal tract 

profiles for three stress conditions (Angry, Clear, 
Lombard) and Neutral are shown in Fig. 2 for a 
single speaker producing the selected vowel /EH/ 
in the word “help” 4. The first row of this figure 
shows an estimate of the vocal tract shape, calculated 
from the linear predictive cepstral information for 
each frame in the selected phoneme (Hansen and 
Womack, 1996). It is clear that for Angry versus 
Neutral speech, the regions where the greatest varia- 
tion occurs are reversed (i.e., pharynx cavity versus 
the mid pharynx to oral cavity). Differences in vocal 
tract shape are also apparent for Clear and Lombard 
effect profiles. Hence, features based upon this vocal 
tract shape representation should be useful for differ- 
entiating these stress conditions. 

These observations motivate features that reflect 
cross-sectional area, A,, of the vocal tract at selected 
‘ ‘slices’ ’ . Each slice, i, of the vocal tract is deter- 
mined by a sequence of radial lines originating be- 
low the lips and across from the vocal chords (see 
Fig. 3). This partitioning is similar to the Distinctive 

Regions Model (DRM), except that ten regions of 
equal longitudinal size are used here. 

2.3. I. Articulatory cross-sectional areas A, 
Cross-sectional areas, A i, measure the distance 

from the soft to the hard pallate as illustrated in Fig. 
3. The variation across phoneme groups are consid- 
ered for ten slices of the vocal tract as approximated 

4 Example SUSAS audio files for a male speaker producing the 
word “help” under the four stress conditions from Fig. 2 is 

available at http://www.elsevier.nl/locate/specom. 

AI A2 A3 A4 A5 As A7 A6 Ag AIO 

Fig. 3. Vocal tract cross-sectional area regions from the DRM 
model. 

Area Ratio, Ri, Regions 

in the DRM (A;: i = I,. . . ,lO>. Assessment of 
cross-sectional areas indicate that articulatory param- 
eters taken towards the end of a partition (e.g., the 
second half of a phoneme) are significantly more 
discriminative for detection of stress than those at 
the beginning. It is therefore suggested that some 
stress conditions have a greater effect on the ultimate 
phoneme target, rather than in the movement of the 
articulators toward that target. Five articulatory 
cross-sectional area terms are estimated for each 
phone class and stress condition. Feature differentia- 
bility rankings are then compiled for the articulatory 
cross-sectional areas and summarized in Table I for 
each phoneme and stress condition. Each cell of this 

table details the separability ranking for good (A 
rankings) versus moderate to poor (B or C rankings) 
detection of stress. From Table 1, we conclude that 
the cross-sectional area ratios of vowels, affricates, 
nasals and semi-vowels are the best at stress discrim- 
ination for virtually every stress condition. 

2.3.2. Articulatory area ratios Ri 
The articulatory cross-sectional area ratios are 

formulated using the DRM framework. Ten regions 
span the entire vocal tract from the glottis to the lips 
(see Fig. 3). Complementary area ratios are obtained 
using mean region cross-sectional areas. Each ratio, 
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Table 1 
Articulatory targeted feature rankings 

Stress classification feature targeting rankings; articulatory cross-sectional area A, 

Stress group Separability ranking (A,B f ) 

FR VL AF NA sv ST DT OVERALL 

Angry G, _ A+ A+ A+ A+ A+ 

Normal G, A+ A+ A _ _ B A 

Fast G, _ A+ A+ A+ A+ _ _ A+ 

Question G, A+ A+ A A+ _ B A+ 

Slow G, _ A+ A+ A+ A+ A+ A+ 

Clear G6 A+ A+ A A+ _ _ A+ 

Lombard G, B A+ A+ A+ A+ _ _ A+ 

Soft G, A+ A+ A+ A+ A+ _ A+ 
Apache G, B A+ A+ A+ _ A 

Loud G,, A+ A+ A+ A+ - _ A+ 

R,, is based on a mean area from one of the first five 
regions to one of the corresponding last five as 
follows: 

Ai 
R; = - 

A 
for i= 1,...,5. (1) 

11 -i 

Application of the area ratio, Rj, in evaluating 
stressed speech will be considered using contour 
plots for selected phonemes. Contour profiles are 
used to represent the relative area changes in regions 
of the vocal tract (summarized in the second row of 
Fig. 2). For a given frame of speech, each vocal tract 
configuration is estimated using sixty equally spaced 
cross-sectional area slices which are subsequently 
grouped into ten regions. The variation of each area 
ratio over time is modeled by obtaining a ratio 
average on a per phoneme basis for ten equal time 
periods during isolated word production. Using a 
frame width of 4 ms and frame separation rate of 4 
ms, the average area ratio is obtained. Since these 
areas are estimated from the speech signal, they are 
only estimates of how the true vocal tract would 
actually behave under stress. Other methods involv- 
ing imaging techniques (MRI, X-ray, etc.) would be 
needed to obtain actual vocal tract configurations. 
The present method is consistently applied to speech 
from all stress conditions. Therefore, any algorithm 
weaknesses would have an equal impact on the 
resulting estimated vocal tract shapes under stress 
(e.g., note the particular sharp tongue shape present 
in all stress conditions in Fig. 2). 

The second row of Fig. 2 illustrates the variation 
of R, over the /EH/ vowel in the word “help”. It 
is noted that for Neutral and Clear speech, a bi- 
modal ratio characteristic results, whereas for Angry 
and Lombard effect speech, a nearly unimodal char- 
acteristic variation is observed. The shape of the 
articulatory area ratio contour is the key factor in 
evaluation of movement and area distribution in the 
vocal tract. For example, a region where the contour 
slope is flat indicates no shift in vocal tract areas 
(i.e., stationary articulators). However, a negative 
slope indicates that either the area in the front of the 
vocal tract is becoming smaller with time, or that the 
back area of the vocal tract is becoming larger. The 
reverse is true for a contour with a positive slope. 
Hence, it is possible to make overall statements 
about the time evolution of movement for each stress 
condition. Note that for Angry, the largest shifts in 
area are where the contour slopes are greatest at the 
beginning and end of the liquid /L/. This suggests 
that, at the beginning of the liquid, the tongue is 
moving farther from the hard pallate and then, at the 
end of the liquid, back to its starting position. 

At this point, it is useful to compare both rows of 
Fig. 2 since they represent the same vowel variation 
for the word “help”. For example, the Neutral 
utterance suggests a greater area movement towards 
the back of the vocal tract which represents greater 
shifts of R, and R,. Furthermore, since little move- 
ment exists at the back of the tongue, R, should 
have a relatively flat area ratio contour. Both of these 
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observations are confirmed in Fig. 2. However, for 
the Angry utterance, this situation is reversed and, in 
addition, there is greater movement towards the front 
of the vocal tract. 

Diphthongs are known to consist of vocal tract 
movement from one vowel target to another, requir- 
ing a carefully orchestrated series of articulatory 
muscle changes. Analysis of ratio contour of the 
/AW/ phoneme in the word “out” showed that for 
Clear speech conditions, the speaker does not pro- 
duce a significant vocal tract shift across the diph- 
thong. Ang~ and Lombard effect speech are also 
relatively constant compared to Neutral which has 
higher ratio shifts. While vowel and diphthong area 
ratios reflect vocal tract variation for voiced speech, 
stress could also impact production of consonants 
such as fricatives and affricates. For example, the 
affricate /CH/ in the word “change” showed a 
large bimodal contour shape for Angr?, with large 
starting and ending ratio variation; which confirms a 
large and rapid shift in vocal tract areas. All of the 
stress conditions show distinctly different contours 
for this speaker. 

While results for three phonemes are discussed 
here, it should be noted that several hundred ratio 
profiles were considered. From these profiles, it was 
observed that the position within a phoneme directly 
affects stress class discrimination. In general, we 
conclude that articulatory features should be useful 
for stress classification. 

2.4. Excitation based ,features 

Since articulatory features reflect only vocal tract 
information, it is therefore appropriate to consider 
excitation characteristics. Three excitation related 
features are analyzed for the application of stress 
classification. Previous studies have assessed varia- 
tion due to stress for speech features which include 
pitch, duration, intensity (Hansen, 1995b) and pitch 
synchronous analysis of the Teager nonlinear energy 
operator (Cairns and Hansen, 1994). This study em- 
ploys both pitch and duration for stress classification 
using the observations outlined below. 

2.4.1. Pitch 
Previous studies suggest that pitch is one of the 

most visible features affected by stress. We recall 

that pitch differs from fundamental frequency in that 
it is a perceived value and not the actual rate of 
vocal fold movement. These studies are actually 
based on fundamental frequency measures. An anal- 
ysis of statistical variation of mean pitch across 
stress conditions yields the following conclusions for 
application to stress classification. 
- Pitch characteristics are useful for classification 

of Apache, Clear, Lombard, Question, Slow and 
Sqft spoken speech. 

- Mean pitch for voiced speech such as diphthongs 
CDT), nasals (NA) and vowels (VL) are good for 
classifying those stress conditions under consider- 
ation. 

2.4.2. Phone cluss durution 
While duration is not a direct excitation character- 

istic, it indirectly affects intensity and pitch due to 
speech rate and available forced vital capacity of the 
lungs. Evaluation of the duration distribution as rep- 
resented by the number of frames per phoneme was 
conducted with the following observations: 
- Phone class duration is best for classification of 

Slow, Soft and Question speech. It is also good 
for detection of Angq, Fust and Loud speech. It 
is not, however, useful for classification of Clear 

speech. 
- Semi-vowel (SV) duration is extraordinarily use- 

ful. 
- Duration for all phoneme groups with the excep- 

tion of stops (ST) are good for classifying at least 
three or more stress conditions. 

2.4.3. Intensi@ 
The variation of intensity across whole words and 

individual phoneme classes was considered in a pre- 
vious study (Hansen, 1995b). One key observation 
from that study was that intensity varies significantly 
for Angry and Loud speech, especially over vowels 
and voiced sections. In addition, is was shown that 
energy shifts from consonants toward vowels for 
Angry, Lombard effect and Loud speech. 

2.5. Cepstral bused features 

Cepstral based features have been used exten- 
sively in speech recognition applications because 
they have been shown to outperform linear predic- 
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tive coefficients. Cepstral based features attempt to 
incorporate the nonlinear filtering characteristics of 
the human auditory system in the measurement of 
spectral band energies. The five feature sets under 
consideration here include Mel Ci (C-Mel), delta 
Mel DC; (DC-Mel), delta-delta Mel D2Ci (D2C- 
Mel), auto-correlation Mel AC, (AC-Mel) and 
cross-correlation Mel XC i,j (XC-Mel) cepstral pa- 
rameters. The first three cepstral features (Ci, DC; 
and D2Ci) have been shown to improve speech 
recognition performance in the presence of noise and 
Lombard effect (Hanson and Applebaum, 1990). 
Stress equalization using cepstral parameters has also 
resulted in significant recognition improvement for 
noisy Lombard speech (Hansen, 1994). The AC; and 
XC,,j features are new in that they provide a mea- 
sure of the correlation between Mel-cepstral coeffi- 
cients. Eqs. (2)-(6) summarize how these features 
are calculated for each frame k assuming 1 correla- 
tion lags, L frames per correlation window, and A4 
Mel frequency warped (Mel(f)) bands with energy 
mj. 

C;(k) = ~~lmlcos[ pi(‘io’5)], (2) 

Mel(f) = 2595 log ,0 [ 1 +f/700], 

DC(k) = “,=,w[ci(k+w)-ci<k-w)] 

I 
z;,,= p2 

’ (3) 

D2C,( k) = 
Cl.= ,w[DC,( k + w) - DC;( k - w)] 

2c;,.= tw2 

(4) 

k+L [Cj(m)Cj(m+Z)] 
AC$“( k) = c 

m=k sup AC;“(k) ’ 

k 

(5) 

k+L [ Ci( m)C,( m + I)] 
XC$!j( k) = c (6) 

m=k sup XC;;;< k) 
k 

Next, the statistical distribution for each feature 
set is calculated across stress conditions in order to 
obtain an overall measure of the differentiating capa- 
bility of pairwise features (Hansen and Womack, 
1996). This measure, denoted d,(xz, x,“), estimates 

the distance between two feature vector indices a 

and b as 

4( x:d) 

5 i [( l-q&i) - P(~.L))~ + ( EL(c2.j) - P(b,j) )?I 
i=l j=l 

= 

N 

c (qa,i) + q(bJ 
i= I 

(7) 
This measure assesses the N-dimensional “dis- 

tance” between all N stress classes under considera- 
tion. Here, i and j range over the N stress classes 
where xf and xl represent the feature cluster cen- 
ters. The mean and standard deviation of the ith 
stress condition for speech features a are denoted 
pca,i) and crc(a,i), respectively. It is important to note 
that the mean of a feature set is not necessarily the 
same as the cluster center, because the cluster center 
is chosen by the classification algorithm such that 
the separation between classes is maximized. The 
limitation of the d, distance measure is that it only 
summarizes the separation between a pair of features 
across the N stress conditions considered. In order to 
characterize the stress differentiating capabililty of a 
P dimensional feature set, the following measure is 
formulated: 

Here, a small d, measure suggests reduced pa- 
rameter diffusion across stress classes; while large 
measures suggest better separation between stress 
classes. The values of d, included in this study were 
calculated using seven (P = 7) cepstral parameters 
per feature set (i.e., C,, . . . ,C,>. With this measure, a 
rank ordering of feature performance for stress clas- 
sification is possible. In Table 2, we summarize the 
twenty most separable (note d, E [1.16, 4.381) and 
least separable (note d, E [0.18, 0.411) features. To 
explain this table, we use d, measure assessment of 
three feature subsets for pitch. Note that pitch is in 
the best feature set four times in this table. For 
example, d3(xt> = 2.02, 3.46, 0.39 for the (i) sam- 
pled, (ii) mean and (iii) slope pitch feature sets, 
respectively. First, the sampled partition feature set 
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Selected best and worst stress classification features 

Selected stress classification features; d, measure E [O. l&4.38]; 6 speakers and 9 stress conditions: C,, , C,; AC,, , AC,; Pitch 

Top 20 Features 

Best 

d, E [1.16,4.38] 

Mean: C,, Cz, C,, C,, AC,, Pitch 

Slope: C,, AC2 

Sample25,: C,, C,, Pitch 

Samples,,,: C,, C,, Pitch 

Sample,5,: C,, C,, AC2, Pitch 

Duration 

Worst 

d, E [0.18,0.411 

Mean: AC, 

Slope: C?, , C,, AC,, AC,, AC,, AC,, Pitch 

Sample,,,: AC,, AC, 

Sample,,,: AC, 

Sampie,5,: C,, AC,, AC,, AC, 

is composed of P features taken at equally spaced 
samples in a given phoneme (i.e., at 25%, 50% and 
75% relative positions). Second, the mean partition 
feature set is simply the mean of each feature across 
every frame in the phoneme. Finally, the slope parti- 
tion feature set is discussed later in this section. 
Next, a comparative assessment for each feature set 
is presented. 

2.5. I. C-Mel 
The Mel-cepstral parameters C, represent the 

spectral variations of the acoustic speech signal; 
hence, they should be useful for stress classification 
since vocal tract structure variation due to stress can 
cause movement in energy between spectral bands. 
A stress separability evaluation of Mel-cepstral pa- 
rameters was performed for each feature and stress 
condition across selected phonemes. To illustrate 
each feature’s ability to distinguish stress classes, the 
pairwise discriminitive measure in Eq. (2) was em- 
ployed. For the purposes of multiple feature compar- 
ison, the objective stress distance measure value for 
Cj of d,(Cf, C,“> = 6.96 and d,(xt 1 = 1.12, 1.90, 
0.44 (sampled, mean and slope C-Mel, respectively) 
are used to compare the overall stress discrimination 
of this feature. Here, a larger score represents fea- 
tures which provide a wider separation under stressed 
speaking conditions. 

2.5.2. DC-Mel and D2C-Mel 
The delta Mel-cepstral DC, and delta-delta Mel- 

cepstral D2C, parameters provide a measure of the 

“ velocity’ ’ and “acceleration” of movement of the 
Mel-cepstral parameters C;. These features are calcu- 
lated using the regression in Eq. (3) on the C, 
parameters. Previous studies have employed these 
velocity and acceleration parameters for recognition 
of Lombard effect speech (Hanson and Applebaum, 
1990). It is suggested that the reason they are robust 
to stress variation is due to their reduced variance 
across stress conditions. This trait suggests that while 
these features are more useful for recognition, they 
are less applicable to stress classification. This is 
supported by the objective stress class separability 
distance measure values for DC; and D2C, of 
d?(DC:, DC:) = 1.42 and d,(D2Ct, D2C,0> = 1.69 
which are lower than for the Melcepstral parameters. 

2.5.3. XC-Mel and AC-Mel 
The cross-correlation of the Mel-cepstral parame- 

ters XC,,, provide a measure of the relative changes 
of broad’ versus fine spectral structure in energy 
bands from one Mel-cepstral parameter Ci to another 
C,. Since the correlation window length (L = 7) and 
correlation lags (I= 1) are fixed in this study, the 
correlation terms are a measure of how correlated 
adjacent frames are over a 72 ms analysis window 
(24 ms/frame and 8 ms skip rate). This feature is 
potentially useful for stress classification, because it 
provides a quantitative correlation measure between 
broad versus fine speech spectral changes. Since this 
feature requires a sequence pair of Mel-cepstral pa- 
rameters, an objective stress class separability dis- 
tance measure could not be calculated because direct 
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comparison with other parameters (i.e., C-Mel, AC- 
Mel, etc.) would not be appropriate. However, the 
AC-Mel features are shown to have similar proper- 
ties to XC-Mel features (Hansen and Womack, 1996). 
The auto-correlation of the Mel-cepstral parameters 
AC, (i.e., AC-Mel) provide a measure of correlation 
and relative change in spectral band energies over an 
extended window frame. A separability feature as- 
sessment was conducted for AC-Mel resulting in a 
stress class separability distance measure of d,(ACi, 
AC:) = 7.24, which is greater than all other cepstral 
based features studied. However, d, was slightly 
lower with a values of d,(xt > = 0.61, 0.94, 0.42 
(sampled, mean and slope AC-Mel, respectively). In 
a previous study, the broader detail captured by the 
AC-Mel parameters was shown to be more reliable 
for stress classification (Hansen and Womack, 1996). 
Next, an assessment of the auto-correlation Mel- 
cepstral parameters and their derived features (mean, 
standard deviation and slope) are summarized with 
respect to stress classification. 
* AC..Mel parameters estimated in the beginning of 

the phoneme group were significantly more use- 
ful than those estimated at the end of the phone 
group partition. 

- Affricates (AF) are excellent for detection of all 
stress conditions considered with the exception of 
Question and Clear speech. 

* Fricatives (FR) are good for detection of Lom- 
bard and Apache speech. 

These observations are based upon an analysis of 

Table 3 

Slope AC-Mel targeted feature rankings 

Stress classification feature targeting rankings; slope AC-Mel SAC, 

Stress group Separability ranking (A,B + ) 

6,580 words (35 word vocabulary, 2 tokens per 
word, 11 speakers, 10 stress conditions), with further 
analysis performed across phoneme partitions for 
mean, standard deviation, and slope. 

2.5.4. Mean AC-Mel (MAC-Mel) 
This feature provides the mean of the AC, values 

across every frame in a partition. It therefore repre- 
sents an average measure of the spectral structure in 
a phone group partition. The overall separability 
measure for this feature set is d,(MACt ) = 0.94, 
which is greater than d,(ACt ) = 0.61. Mean AC- 
Mel parameters from: 

Semi-vowels (SV) are good for detection of Lom- 
bard and Apache speech. 
Diphthongs (DT) are good for detection of An- 

gry, Loud and Question speech. 
Affricates (AF) are good for detection of Neutral 
speech. 
Fricatives (FR), nasals (NA), stops (ST) and vow- 
els (VL) are not good for detection of stress. 

2.5.5. Standard deviation AC-Mel (SDAC-Mel) 
This feature provides the standard deviation of the 

AC, values across every frame in a partition. The 
standard deviation of AC-Mel parameters from: 

Vowels (VL) are good for detection of Apache, 

Clear and Lombard effect speech. 
Fricatives (FR) are very good for detection of 
Clear speech. 
Diphthongs (DT) are good for detection of Clear 
and Neutral speech. 

FR VL AF NA sv ST DT Overall 

Angry G, 
Normal G, 
Fast G, 
Question G1 

Slow G, 

Clear G, 
Lombard G, 
Soft G, 

Apache G, 

Loud G,, 

_ AC 

B A+ 
_ A+ 
_ A+ 
_ A+ 

B A+ 
_ A+ 
_ A+ 
_ A+ 
_ A+ 

_ 
Bt A+ 
_ A+ 

B+ A 
_ A+ 

B+ A 

A+ 
_ A+ 

A+ 

_ A A+ 
_ 

A A+ 
_ _ A+ 
_ _ A+ 
_ A 
_ A A+ 
_ _ A+ 
_ A A+ 
_ A A+ 

A- 

A 
A 

A- 
A 

A+ 
A+ 

A 
A 

A 
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Table 4 

Overall targeted feature rankings 

Stress classification feature targeting rankings; cepstral, excitation and articulatory domains 

Stress parameter Separability ranking totals 

A+ A A B+ B B- 

Articulatory 37 3 0 0 4 0 26 

Pitch 30 0 0 0 0 1 39 

Duration 8 0 18 3 2 0 39 

AC-Mel 7 5 0 10 3 2 43 

Mean AC-Mel 0 0 0 1 5 I 63 

Std AC-Mel 1 0 0 0 5 2 62 

Slope AC-Mel 26 6 0 3 2 0 33 

. Affricates (AF) are good for detection of Angry 

and Loud speech. 
- Nasals (NA), stops (ST) and semi-vowels (SV) 

are not good for detection of stress. 

2.5.6. Slope AC-Mel (SAC-Mel) 
This feature is based on the slope from the left- 

most min/max AC-Mel parameter to the rightmost 
min/max AC-Mel parameter in the AC, sequence 
for a phone group partition. It therefore provides an 
overall measure of the spectral movement across a 
partition. This feature can be compared to others 
using the overall separability measure value of 
d,(SACt ) = 0.42 which is slightly less than the 
slope C-Mel feature d,(SCt ) = 0.44. An evaluation 
of this feature across the SUSAS database was per- 
formed to assess its stress discriminating ability. The 
results shown in Table 3 suggest that the slope of 
AC-Mel for vowels are consistently useful for differ- 
entiating all stress conditions. The slope AC-Mel 
feature for diphthongs, nasals and stops are also 
useful for stress differentiation whereas fricatives 
and affricates may be somewhat useful for stress 
detection. 

2.6. Targeted stress classification features 

In the previous sections, features from articula- 
tory, excitation and cepstral domains were consid- 
ered for their ability to achieve reliable stress classi- 
fication. In the formulation of a neural network 
based stress classification algorithm, a codebook of 
targeted features will be assembled for each potential 
stress condition and phoneme class group. The tar- 

geted feature evaluation results in a parent set of 
features from these three domains. Table 4 summa- 
rizes the targeted feature rankings by listing the total 
number of times each rank appears for each feature 
set (i.e., the aggregate of Tables 1 and 3). From the 
articulatory feature domain, the cross-sectional vocal 
tract areas A;, are selected for use in the parent 
feature set. For the excitation feature domain, pitch 
and duration are selected. Finally, from the cepstral 
domain, auto-correlation Mel-cepstral features and 
their statistics (mean, standard deviation and slope) 
are included in the parent feature set. For each 
phoneme group and stress condition, a subset of 
these features is selected for a targeted feature stress 
detection system. Next, this codebook of stress de- 
tection features is employed in the formulation of the 
stress classification algorithm. 

3. Stress classification algorithm 

Next, a stress classification algorithm is formu- 
lated using back propagation neural networks and 
targeted stress sensitive speech features. The stress 
classification system, as illustrated in Fig. 4, has 
three major components: (i) stress sensitive feature 
extraction, (ii) automatic stress independent phone 
group partitioning, and (iii) neural network stress 
scoring. Each area will be considered in detail. 

3.1. Stress independent partitioning 

A speech partitioning algorithm that provides con- 
sistently parsed speech across time is a difficult task 
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Fig. 4. Stress classification algorithm 

due to nonunique transitions between phonemes, the 
impact of stress, and coarticulation effects (Arslan 
and Hansen, 1994). However, in a previous study on 
robust speech partitioning (Pellom and Hansen, 
19961, an algorithm was formulated using hidden 
Markov models and Viterbi decoding to parse speech 
by phoneme group. Though this algorithm was used 
to direct constrained speech enhancement, it was also 
shown to be useful for speech partitioning under 
stress. The speech partioning based HMM models 
for this study were trained using neutral speech data 
from the TIMIT (Fisher et al., 1986) and stressed 
speech SUSAS databases. Each HMM is trained for 
one phoneme group using continuous density distri- 
butions with five states per phoneme and two mix- 
tures. The seven models (SI: Silence, FR: Fricatives, 
VL: Vowels, AF: Affricates, NA: Nasal% SV: 
Semi-Vowels, DT: Diphthongs) were trained using 

word grammars composed of phoneme group se- 
quences. Viterbi decoding is then used to match the 
state sequence to the grammar for each input word to 
estimate the phoneme boundary sequence. This por- 
tion is incorporated in the overall stress classification 
algorithm as illustrated in Fig. 4. 

3.2. Stress classifier formulation 

In formulating an algorithm for stress classifica- 
tion, it should be noted that a range of stress or 
emotion may exist for a given speaking condition. 
Hence, it is necessary to estimate a stress probability 
response vector to assess the different degrees and 
types of stress. A stress score is estimated by training 
a stress detector to recognize one stress condition 
given knowledge of the phoneme group determined 
from the partitioning task. A codebook of these 
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stress detectors can then be used to provide an 
estimate of each stress condition. This formulation is 
based upon a mathematical framework that repre- 
sents feature movement from one region in a source 
generator space to another, where each speech pro- 
duction region is represented as a stress state (Han- 
sen and Cairns, 1995). Next, the general stress detec- 
tion system shown in Fig. 4 employs neural networks 
to estimate the stress score p( tk 1 w,); which mea- 
sures the degree of stress given that utterance wi is 
spoken under stress condition k. Two particular ap- 
proaches using this general framework for stress 
classification are presented: (i) mono-partition 
(MPSC) and (ii> triple-partition (TPSC). 

Two types of neural networks are considered for 
single and triple-partition classification. Mono-parti- 
tion classification uses the cascade correlation net- 
work (Minai and Williams, 1990) with an extended 
delta-bar-delta (EDBD) learning rule. Triple-partition 
classification employs the commonly used fast back- 
propagation learning rule (Hansen and Womack, 
1996). The motivation for using a more complex 
neural network training algorithm (EDBD) for sin- 
gle-partition classification is that training data for 
each class is less separable and larger than for the 
triple-partition case. Details on how these neural 
network classifiers were implemented will be pre- 
sented in Section 4. 

Both stress classification algorithms include three 
types of features: single frame, partition and word 
based parameters. The MPSC and TPSC algorithms 
differ in several ways, but most notably in the speech 
features that drive the algorithms. In the MPSC 
system, a stress detector is formulated for each stress 
condition and across all phoneme groups; however, 
the feature sets are not targeted. For the TPSC 
system, a stress detector is formulated for each stress 
condition and phoneme group using targeted fea- 
tures. Sections 4.1 and 4.2 will present results on the 
performance of these two approaches for stress clas- 
sification. Next, the TPSC system will be employed 
in the formulation of a stress directed speech pro- 
cessing system. 

3.3. Stress directed speech recognizer formulation 

Here, the application of stress classification is 
considered in an effort to show that knowledge of 
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Fig. 5. Stress directed recognition algorithm. 

stress could provide improvement in overall recogni- 
tion performance. A flow diagram is shown in Fig. 
5, where separate stress dependent recognizers are 
employed in combination with a stress classification 
system. Hence, it is proposed that a speech recog- 
nizer trained for one stress class will better model 
differences between words, since it is not required to 
model the additional variations due to stressed speak- 
ing conditions. 

Next, the notation associated with the stress di- 
rected recognition algorithm is presented. First, the 
stress classification system outputs a K;dimensional 
vector of stress scores, denoted 5 = { tk 1 k = 
1,. . , K}, since there are K stress conditions. Sec- 
ond, since there are I words in the vocabulary, there 
is an i X k dimensional matrix of possible stress 
score vectors ek in each column, such that each 
matrix term is denoted wik = p( tk 1 wi>. Next, the 
probability that the stress condition is k, denoted 
p( tk), is calculated using the matrix weight term 
wik. Fourth, a word recognizer score, denoted 
p(w; I tk), is obtained for each word wi in the vocab- 
ulary given that the stress condition is k. Finally, the 
highest probability that the word is imax, denoted 

dWimox)9 
is calculated using these probabilities with 

the following procedure. 
In order to formulate a codebook of stress depen- 

dent recognizers, it is desirable to use the existing 
HMM speech recognition framework as shown in 
Fig. 5. The system incorporates stress class informa- 
tion in the source generator space by including data 
from each stressed speech region in the training of 
each stress dependent recognizer (Hansen et al., 
1994). This is equivalent to maximizing the word log 
probability p(wi 1 Sk), given the overall word stress 
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score ek. The word stress score is calculated by 
averaging the scores across all partitions for a candi- 
date word. These word score vectors, denoted Gk = 
{w,L / i= l,..., I}, are obtained from a codebook of 
speech recognizers spanning the source generator 
space. Once the largest stress probability term 

~(&,,,,.Y 1 WI) h as b een calculated as in Eq. (9) the 
speech features are passed to the stress dependent 
recognition system trained for stress condition kmax 
as illustrated in Fig. 5. The final utterance decision is 
then calculated as follows by maximizing 

PC”; I 5h.k) over every word in the vocabulary: 

P( L,,O.l I WI) = my P(Sx I W!), (9) 

P( ~v;,,2<i.,) = ““” P(W, I Sk,,~~,a)~ (10) 

Next, the four preceeding components are inte- 
grated as shown in Fig. 5, for the overall stress 
independent recognition system. To achieve reliable 
performance, phonemic class partitioning is still used 
to temporally divide input speech into a source gen- 
erator sequence. With these phoneme labels, targeted 
features are extracted and passed to the stress classi- 
fication algorithm. It is of interest to determine the 
importance of isolated (MPSC) versus context de- 
pendent (TPSC) stress classification using the parti- 
tioned phoneme sequence. 

4. Evaluations 

4. I. Mono-partition stress classification (MPSC) 

The MPSC system is formulated using three key 
factors: (i) a single-partition data window, (ii) per- 
ceptually grouped stress conditions, and (iii) a com- 
mon feature set. Hence, the stress classifier is pro- 
vided with only one partition of data for the stress 
class decision. Furthermore, in an attempt to mini- 
mize the number of classifier models, stress classes 
which were found to be perceptually similar are 
grouped together. Each stress group is denoted as G, 
where index i indicates the group number. Note that 
this grouping is based upon informal listening tests 
of perceptually similar stressed conditions. Stress 
classes are grouped as follows: G, (Angry, Loud); 

G2 (CondSO, Cond70, Neutral, Soji); G, (Fast); G4 

(Question); G, (Slow); G6 (Clear); and G, 
(Lombard effect). Finally, a common set of speech 
features is used for stress classification of all 
phoneme groups. 

Performance over a focused word set is one means 
of measuring a stress classification algorithm’s abil- 
ity to differentiate stressed speech. In this evaluation, 
a five word vocabulary from one speaker taken from 
the SUSAS database is used. The five word set 
chosen is: “brake”, “east”, “freeze”, “help” and 

‘ ‘ steer’ ’ . Note that for mono-partition based stress 
classification, the order of the phoneme classes will 
not influence stress classification performance. 
Therefore, the same three neural network stress de- 
tectors will be used for each phoneme in the two 
sample words “Sam” and “mass”. Comparative 
overall classification results for the feature sets across 
all stress groups are (CL, DC ;, D2C,, AC ;) = (78.9%, 
76.9%, 79.3%, 80.6%) suggesting that AC-Mel pa- 
rameters are the best cepstral features for stress 
classification considered. Results will indicate for d, 
that both Ci and AC, perform better than velocity 
and acceleration features. For example, for Lombard 
effect speech, a parameterization using AC; provides 
better stress classification results than C,, DC, or 
D2C; (i.e., 94% versus 76%, 71%, 58%). 

Another measure for feature set comparison is the 
stress class separability distance measure from Eq. 
(7). The measure assesses the separation of stress 
groups for a given feature pair. The two chosen 
feature indices are a = 3 and b = 6 so that the 
distance measure d,(xz, x,0> yields CC;, DC,, D2Ci, 
AC,) = (6.96, 1.42, 1.69, 7.24). It is clear that for 
index 3 versus 6 (roughly a comparison of global 
versus fine spectral structure for C,), that C, and 
AC, are better able to reflect differences in stressed 
speech. These values are designed for comparison 
purposes only, hence, actual values do not have 
physical units. The results show that the AC, fea- 
tures are the most separable feature set of those 
considered. Hence, d, provides a means by which to 
reduce the number of features in the original code- 
book set for stress classification. 

For the MPSC system evaluation, it was deter- 
mined that (i) perceptually grouped stress conditions 
may not translate to similarly produced stressed 
styles, (ii) a broad feature set is needed (such as 
articulatory and excitation), (iii) separate classifiers 
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should be employed for each phoneme group, and 
(iv) adjacent partition information should be incorpo- 
rated to model cross-partition variation. 

4.2. Tri-partition stress class$cation (TPSC) 

Reduction of the size of the feature targeting 

search space is accomplished by using only the 

AC-Mel cepstral features. For the second classifier, 
stress classes are grouped as follows: G, ( Angrq'); 
G2 (Neutral); G, (Fast); G4 (Question); G, (Slow); 

G6 (Clear); G, (Lombard effect); G, (Sqftk G, 
(Apache); and G,, (Loud). Note that the additional 
stress class termed Apache is added which repre- 
sents actual helicopter cockpit stressed speech for 
comparison with other simulated stressed speech 
conditions. 

MPSC and TPSC classifier results are compared 
with the following features made available to both 
classifiers: autocorrelation Mel-cepstral parameters 
and their derived features, durational, articulatory 
and excitation. In order to reduce data requirements 
for TPSC, a targeted feature subset is selected for 
each stress condition and phoneme group. This re- 
sults in a smaller and more meaningful feature set 
for stress detection. 

The TPSC system consists of a codebook of 
neural networks, one for each phoneme group and 
stress condition. As Fig. 6 illustrates, when using 
isolated phonemes (mono-partition), measurable 
stress classification performance can be achieved. 
However, when the stress classifier is based upon a 
context dependent phoneme sequence (tri-partition), 
performance significantly improves by + 34.3% 
(Womack and Hansen, 1995). Note that when only 
one back-propagation neural network is trained for 
each phoneme group, tri-partition classification using 
the master non-targeted feature set did not perform 
satisfactorily. The results also show that a phone 
sequence, stress and speaker independent stress de- 
tection system is not viable. This leads us to focus 
the problem such that the stress detectors are both 
stress and phoneme sequence dependent. Next, de- 
tails of the improvement obtained with targeted fea- 
ture sets is discussed. 

Outstanding stress classification performance is 
achieved for vowels and diphthongs. Good perfor- 
mance is also achieved for nasals and stops which 
might be unexpected since they are more difficult to 
represent due to limited duration, mixed excitation, 
or derivation from an all-pole speech model than 
other phoneme groups. It is suggested that such 

SIJSAS STRESS CLASSIFICATION PERFORMANCE 
TM-PARTITION TARGETED VS. MONO-PARTITION NON-TARGETED FEATURES 

11 Speaker, 35 Word, and 10 Stress Condition Speech Corpus 

91.01% 
TRCPARTITION 

TARGETED 
35 WORDS 

11 SPEAKERS 

Em 
56.68% 

MONO-PARTITION 
NON-TARGETED 

5 WORDS 
1 SPEAKER 

ANGRY FAST SLOW LOMBARD APACHE 
OVERALL 

NEUTRAL OUESTION CLEAR SOFT LOUD 

Fig. 6. Stress classification performance comparison using (i) mono-partition non-targeted and (ii) tri-partition targeted features. 
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performance is achieved because a mixture of excita- 
tion and articulatory features are employed in addi- 
tion to adjacent partition information. A 7.2% differ- 
ence between the open and closed test results sug- 
gests that the stress classification algorithm is able to 
generalize its decisions from testing data. 

4.3. Automatic versus human stress classification 

To put the performance of the triple-partition 
stress classification algorithm into perspective, a 
comparison is made with human listeners. A previ- 
ous study on stressed speech synthesis employed a 
subjective listener test where the listener was asked 
to decide on a pairwise token basis the stress content 
(Bou-Ghazale and Hansen, 1995). In that study, an 
experiment was performed using SUSAS data in 
which human listeners were asked to select whether 
one, both or neither of the two tokens was spoken 
under stress. Here, only a single stress condition 
versus Neutral was considered. The listener’s ability 
to detect Angry, Lombard and Loud versus Neutral 
speech was 97%, 82% and 85%, respectively. This 
contrasts with the performance of the automatic stress 
classifier which achieved 97%, 100% and 94%, re- 
spectively. Note that for Lombard effect speech, the 

stress classification system achieved 18% higher per- 
formance than human listeners. The potential reason 
Angry and Loud listener performance is closer to 
that of the stress classifier is that listeners may have 
more experience identifying these stress styles versus 
Lombard effect. The results in this study show that it 
is possible for an automatic stress classification sys- 
tem to perform as well or better than a human 
listener. 

4.4. Application to stressed speech recognition 

In this final section, we consider whether the 
proposed stress classification algorithm can provide 
additional knowledge to improve speech recognition 
under stressed conditions. The scores from the TPSC 
system are used to weight the outputs of a codebook 
of stress dependent recognizers. Hence, a recognizer 
must be formulated for each type of speaker stress. 
Here, a speaker dependent, isolated word, continuous 
density hidden Markov model recognizer is used. 
The HMM training method employs a state tying 
initialization based upon the degree of similarity 
between mean mixture vectors in successive states. 
The models assume left-to-right state transitions with 
no skips allowed. The training algorithm is based on 

SUSAS STRESS DIRECTED RECOGNITION PERFORMANCE 
COMPARISON TO NEUTRAL AND MULTI-STYLE TRAINED RECOGNITION 

11 Speakers, 35 Words, 10 Stress Conditions 

100% ______________________---------- 

______-------- ---------- 

w 80% 

: 

5 60% 
F 
Z 
8 40% 

ANGRY FAST SLOW LOMBARD APACHE OVERALL 
NEVTRAL GUESTION CLEAR SOFT LOUD 

Fig. 7. Stress directed recognition comparison 
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the Baum-Welch forward-backward reestimation 
algorithm. 

Three stressed speech recognition evaluations are 
considered with results summarized in Fig. 7. To 
establish a baseline level of performance, the first 
evaluation employs neutral trained HMMs that are 
tested with stressed SUSAS data. An overall open 
test recognition rate of 70.5% is achieved, with 
performance ranging from 33% for Apache to 87% 
for Neutral speech. It is noted that recognition is 
most severely affected by Apache speech since the 
data represents actual stressed speech. The second 
evaluation focuses upon multi-style trained HMMs. 
For each word, an HMM is trained across all stress 
conditions and speakers in the training set. This 
approach differs from a previous study (Lippmann et 
al., 1987) in that training is speaker independent and 
speech is sampled at 8 kHz. An overall open test 
recognition performance of 65.2% is achieved; which 
is -5.3% lower than the neutral trained HMM. The 
third evaluation assumes estimated knowledge of the 
speaker stress state from a tandem TPSC neural 
network stress classifier and HMM recognizer trained 
for each stress condition. The stress directed recogni- 
tion rate is 80.6%, which is + 10.1% more than 
neutral trained and + 15.4% more than the multi-style 
trained HMM. Results are particularly encouraging 
for Apache style stressed speech, with rates increas- 
ing from 3 1% to 69%. This suggests that improve- 
ment can be achieved for actual stressed speech. This 
evaluation has served to illustrate the benefit of a 
stress directed formulation which encompasses gen- 
eral speech production as reflected in a source gener- 
ator space. 

5. Summary 

In this study, the problem of improved stress 
classification using targeted speech features has been 
considered. Two stress classification algorithms are 
proposed to estimate a probability vector represent- 
ing the degree of speaker stress. It was shown that 
context sensitive stress classification via tri-partition 
(TPSC) achieves better performance than the mono- 
partition (MPSC) algorithm. Further, new features 
for stress classification from the articulatory and 
excitation domains were assessed. It is suggested that 

the output stress probability vector can also be em- 
ployed to measure mixtures of speaker stress (e.g., 
combined Fast and Loud speech). A stress mixture 
model is suggested to be useful for applications such 
as emergency telephone message sorting or perfor- 
mance improvement in conventional speech process- 
ing systems. The stress classifier output stress score 
vector was then used to direct a stress dependent 
HMM recognizer. This resulted in an improvement 
of + 10.1% to + 15.4% over neutral and multi-style 
trained systems. In conclusion, stress classification 
using targeted features and neutral network classi- 
fiers have been shown to be viable for the estimation 
of the degree of speaker stress, as well as providing 
useful information for improving performance of a 
speech recognition algorithm. 
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