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Abstract
The problem of reliable speech recognition for in-vehicle appli-
cations has recently emerged as a challenging research domain.
This study focuses on the feature extraction stage of this prob-
lem. The approach is based on MinimumVariance Distortionless
Response (MVDR) spectrum estimation. MVDR is used for ro-
bustly estimating the envelope of the speech signal and shown
to be very accurate and relatively less sensitive to additive noise.
The proposed feature estimation process removes the traditional
Mel-scaled filterbank as a perceptually motivated frequency par-
titioning. Instead, we directly warp the FFT power spectrum of
speech. The word error rate (WER) is shown to decrease by
27.3% with respect to the MFCCs and 18.8% with respect to
recently proposed PMCCs on an extended digit recognition task
in real car environments. The proposed feature estimation ap-
proach is called PMVDR and conclusively shown to be a better
speech representation in real environments with emphasis on
time-varying car noise.

1. Introduction
Capturing the vocal tract transfer function (VTTF) from the
speech signal while eliminating other extraneous speaker depen-
dent information such as pitch harmonics is a key requirement
for accurate speech recognition [1, 2]. It is well known that
the vocal tract transfer function is mainly encoded in the short-
term spectral envelope [3]. Therefore, extracting the short term
spectral envelope accurately and robustly (especially in additive
noise) is crucial for robust speech recognition. It is also widely
accepted within the speech recognition community that incor-
porating perceptual considerations, such as the Mel and Bark
scales, into the feature extraction process leads to improved ac-
curacy [4, 5].

Mel-Frequency cepstral coefficients (MFCCs) [4] have
proven to be one of the most effective set of features for speech
recognition. They are computed by applying a Mel-scaled filter-
bank either to the short-term FFT magnitude spectrum or to the
short-term LPC-based spectrum to obtain a perceptually mean-
ingful smoothed gross spectrum. Both the FFT and LPC-based
spectrum, however, have a limited ability to remove undesired
harmonic structure, especially for high pitch speech [2]. Further-
more, it has been observed that, for high pitch voiced speech,
the formant frequencies are biased towards strong pitch harmon-
ics and their bandwidths are therefore mis-estimated [2, 3, 1].
FFT-based MFCCs have also been shown to be less effective for
stressed speech recognition than LP-based MFCCs [6]. More-
over, MFCCs are expected to carry a good deal of speaker depen-
dent information. The evidence of this is that the same feature
representation is commonly used in speaker recognition sys-
tems. It is also widely accepted that MFCC is quite fragile in
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and additional compensation such as feature enhancement
odel adaptation is needed for acceptable performance in

tic environments [7, 8].

is commonly agreed within the speech coding community
he spectral envelope, not the gross spectrum, represents
cal tract transfer function [3, 2, 1]. For unvoiced sounds
ectral envelope and gross spectrum are similar. However,
iced and transitional sounds, there can be a substantial

atch [2]. Experimental evidence suggests that the upper
ral envelope which is obtained by sampling the FFT spec-
at the pitch harmonics is more effective, accurate, and re-
for speech recognition than the smoothed gross spectrum.
ross spectrum can be viewed as an averaging of the up-

nd lower spectral envelopes and thus more susceptible to
and other environmental perturbations [2, 9]. Direct up-

nvelope estimation schemes using pitch-synchronous and
picking techniques for computing the upper envelope have
n promise. However, they are both computationally expen-
nd prone to non-robust behavior in noisy conditions [3, 2].

inimum Variance Distortionless Response (MVDR) spec-
has been shown to be a superior way of modeling the speech
ared to the linear prediction (LP), especially for medium
igh-pitch speech [10]. It was earlier utilized for speech
nition in noise [11, 9]. In [11], the FFT spectrum, prior
Mel-filterbank processing, was simply replaced by a high
(typically 80) MVDR spectrum. Although this approach
d better results than MFCCs, it was rather computationally
sive. Another attempt to use the MVDR was made in [9].
roposed PMCCs were similar to PLP [5] in terms of imple-
tion and shown to improve recognition accuracy in real car
conditions. The PMCC approach was able to use the upper
ope modeling property of the MVDR spectrum [10, 9] to
extent and this yielded substantial improvement.

he aim of the filterbank processing is to remove extrane-
xcitation information and to track the spectral envelope.
ver, this approach is shown to have a limited ability to

ve strong harmonic structure for medium and high-pitch
h [1, 3, 2]. The MVDR methodology, on the other hand, can
ively model medium and high-pitch speech and tracks the
envelope thereby excellently smoothing undesired excita-

nformation. Therefore, it is feasible to completely remove
lterbank processing step from feature extraction process.
allows us to warp the FFT power spectrum directly, pro-
g a better approximation to the perceptual scales. Thus,
DR methodology is able to produce superior results with
(and perhaps with clean) speech due to the two claims: its

y (1) to model upper envelope accurately yielding a perfor-
e gain in noisy conditions, (2) to better suppress speaker-
dent information yielding more accurate recognition and
decoding in both clean and noisy conditions.



2. MVDR Spectral Envelope Estimation
For details of MVDR spectrum estimation and its previous uses
for speech parameterization, we refer the reader to [10, 11, 9].
We only summarize the general properties and computational
algorithm of the MVDR spectrum.

In the MVDR spectrum estimation method, the signal power
at a frequency, ωl, is determined by filtering the signal by a
specially designed FIR filter, h(n), and measuring the power
at its output. The FIR filter, h(n), is designed to minimize
its output power subject to the constraint that its response at
the frequency of interest, ωl, has unity gain. This constrained
optimization is a key aspect of the MVDR method that allows
it to provide a lower bias with a smaller filter length than the
Periodogram method [12]. The Qth order MVDR spectrum can
be parametrically written as;

PMV (ω) =
1∑Q

k=−Q µ(k)e−jωk
=

1

|B(ejω)|2 . (1)

The parameters, µ(k), can be obtained from a modest non-
iterative computation using the LP coefficients ak and prediction
error variance Pe [13, 12]

µ(k) =

{
1

Pe

∑Q−k
i=0 (Q + 1 − k − 2i)aia

∗
i+k, k : 0, ., Q

µ∗(−k), k : −Q, .,−1
(2)

3. PMVDR Formulation
Previous approaches to integrating the MVDR into speech pa-
rameterization for speech recognition involved using MVDR as
a spectrum estimation [11] and as an envelope estimation tech-
nique [9]. It was shown that using MVDR methodology to esti-
mate the spectral envelope leads to better performance [9]. In [9],
perceptual considerations were integrated using the Mel-scaled
filterbank at the expense of loosing some useful information. It
is also a rough approximation to the perceptual scale since it
samples the perceptual spectrum at the center frequencies of the
filterbank. Furthermore, the filterbank is less effective in com-
pletely removing the harmonic excitation information from the
spectrum. Because of these reasons and aforementioned benefits
in Section 1, we remove the filterbank and perform warping di-
rectly on the FFT power spectrum. After obtaining a perceptual
spectrum, the remainder of the estimation process is similar to
the PMCC approach [9]. Our new approach is, however, named
PMVDR which stands for perceptual MVDR coefficients.

3.1. Direct Warping of FFT Spectrum
It has been shown that implementing the perceptual scales
through the use of a first order all-pass system is feasible [14, 15].
In fact, both Mel and Bark scales are determined by changing
the only parameter, α, of the system [14]. The form, H(z), and
the phase response, β(ω), are given as;

H(z) =
z−1 − α

1 − αz−1
. | α |< 1 (3)

β(ω) = tan−1 (1 − α2)sinw

(1 + α2)cosw − 2α
(4)

where ω represents the linear frequency while β(ω) represents
the warped frequency. α controls the degree of warping. For
16 kHz sampled signals, α = 0.42 and 0.55 approximate the
Mel and Bark scales, respectively. For 8 kHz, these values are
α = 0.31 and 0.42 [14].

3.2. PMVDR Algorithm
Utilizing direct warping on the FFT power spectrum by remov-
ing the filterbank processing step leads to the preservation of
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e 1: Schematic diagram of PMVDR front-end computation

t all the information in the short-term speech spectrum.
n now summarize the remainder of the proposed PMVDR

ithm as follows;

Obtain the perceptually warped FFT power spectrum,

Compute the “perceptual autocorrelations” by utilizing
the IFFT on the warped power spectrum,

Perform a Qth order LP analysis via Levinson-Durbin
recursion using perceptual autocorrelation lags [16, 13],

Calculate the Qth order MVDR spectrum using Eq.(2)
from the LP coefficients [10],

Obtain the final cepstrum coefficients using the straight-
forward FFT-based approach [17].

w diagram for the PMVDR algorithm is given in Fig. 1.
lgorithm is integrated into our recognizer and the source
can be obtained from our web site together with Sonic [18,
].
comparison of envelopes from different front-ends allows

assess the trade-offs and merits of them. We show the en-
es respresented by the first 13 MFCCs, PMCCs and PMV-
in Fig. 2. Here, MFCCs are computed from the power
rum, not from the magnitude spectrum, for comparison
ses. Fig. 2 (A) compares the three envelopes for an un-
d sound segment. Note the excellent match between the
DR envelope and warped spectrum. This can be attributed
accurate perceptual warping achieved by the direct warp-
PMCC partly corresponds to the upper envelope while
DR follows the upper envelope more closely. We also note
MVDR is the smoothest envelope amongst the three. This
es variances of the final model set thereby yielding sharper
ls. This, in turn, leads to more accurate and faster de-
g. Fig. 2 (B) compares the envelopes for a voiced sound
. MFCC and PMCC envelopes do not correctly match with
arped power spectrum because of the rough approximation
filterbank, while PMVDR very accurately models the per-

al spectrum. We usually observe 2 or 3 formants in a voiced
spectrum. Consider the envelope provided by MFCC. We

hesize that it is biased towards strong harmonics and this
s the formant bandwidths to be mis-estimated by introduc-
urious formants. We observe 4 formants in the MFCC

ope. PMCC envelope is a bit better suppressing one possi-
lse formant in the first broad formant structure. However,
l has two formants divided towards the strong harmonics.
DR excellently handles this very broad formant situation
owing two formants only at locations that match with the
d FFT power spectrum more accurately. It is this ability
VDR, in co-operation with the upper envelope property,

elps in high accuracy and noise-robust speech recognition.
ould like to emphasize that the comments made here are
on our observations from real data. However, more thor-

analyses should be performed on articial speech for which
rmant positions and bandwidths are known to prove these
usions.
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Figure 2: Spectral envelopes for MFCC (dotted), PMCC (dash-
dotted) and PMVDR (solid) superimposed onto Mel-warped
FFT power spectrum for (A) unvoiced, (B) voiced sounds of
a female speaker from WSJ database

4. Experimental Evaluation
We use Sonic [18], the Univ. of Colorado’s LVCSR system.
Sonic is a continuous-density HMM (CDHMM) based recog-
nizer. The acoustic models are decision-tree state-clustered
HMMs that use associated Gamma probability density functions
to model state-durations. The 39 dimensional feature vector con-
tains 12 statics, deltas and delta-deltas along with energy, delta
and delta-delta energy. We used pre-emphasis and a Hamming
window of length 25ms and a skip rate of 10ms on the frame
data before further processing. Cepstral mean normalization
(CMN) was also utilized on the final feature vectors. All HMMs
have left-to-right topology with no skips and each state was rep-
resented by 6-24 mixtures depending on the available training
data. The task is an extended digit recognition task using the
CU-Move database [7, 21, 8], in which a total of 60 speakers
balanced across gender and age (18-70 yrs.) were in the training
set. The test set contained 77 speakers. The model set had 450
models and 10K Gaussians [18]. The vocabulary size was 42
including silence (SIL) and unknown word (UNK). The dictio-
nary is very convenient for telephone dialing applications since
it contains most necessary words like “dash”, “pound”, “sign”
in addition to numbers. The results are given in Table 1. The
relative improvement of PMVDR over MFCC is 35.5% for fe-
male speakers and 19.0% for male speaker, an average of 27.3%.
These values are 23.8%, 14.2% and 18.8% for PMCC. The im-
provements can be attributed to the elegant spectral properties
of MVDR and accurate perceptual warping.

Table 1: WERs[%] for CU-Move task with different front-ends.

Gender/Sys. MFCC PMCC PMVDR
Female 10.41 8.81 6.71
Male 12.12 11.45 9.82
Overall 11.19 10.02 8.14

The improvement is remarkable especially for female speak-
ers. This supports the claim that MVDR methodology is es-
pecially effective for high-pitch speech. The parameters, i.e.
the warping factor, α, and LP order, Q, were tuned on a 17-
speaker development set. A good set of values are α = 0.42
and Q = 22. An interesting observation is the relatively high
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VDR. This can be attributed to the smoother nature of
R spectrum, i.e. we need a higher order to model just
h detail necessary for accurate recognition. We note that,
e exhaustive optimization should be performed on a large
ulary task.

5. Noise and Speaker Robustness
noisy database, such as CU-Move, identifying the sources
provement is rather difficult. However, there are two pos-
areas we consider, namely robustness to additive noise and
tness to speaker variability. Channel effects are ignored
se, in our case, the recognition is done within the vehicle
audio data need not be sent over a channel. We used the

CU-Move test set in both analyses.

Robustness to Additive Noise

ning acceptable recognition performance in noise is a desir-
roperty of a feature extraction scheme. We believe that an
sis should be performed, rather then citing the final recog-

results, to prove this claim since there might be other
s of the new feature extraction scheme that could affect the
rmance in a positive manner.

order to perform the noise robustness analysis, we pro-
to use Segmental SNR (SSNR) [22] versus word error rate
) [7]. For the proposed method of evaluation, we can
arize the steps as follows;

Segment the test set using an aligner tool. The segmen-
tation level is basically a speech-silence detection. We
used Sonic’s aligner tool [18] to align the data and extract
speech-silence segmentation from the phone alignments.

Use NIST’s SSNR utility [22] to compute SSNR for each
utterance. The SSNR calculation utility produces an ac-
curate enough SNR estimate for our purpose.

Average the SSNR for each speaker and generate a scatter
plot of the SSNR vs. WER for the entire test set.

he resulting plot is a measure of dependency between the
and WER. We propose to use the correlation coefficient,

valuate the degree of dependency. For a truly noise robust
e extraction scheme, the correlation of SSNR and WER
d be close to 0. The smaller the correlation coefficient, the
e degree of dependency.
e performed the analysis outlined above for three differ-
oustic modeling strategies analyzed in this paper, namely

C, PMCC and PMVDR. The resulting scatter plot is given
ure 3. Note the highly varying nature of SSNR (as much as
) across the speakers. This variation is a typical property
l car environments since there is a wide range of both SNRs
ectral structures for the noise. The correlation coefficients
mmarized in Table 2. There is a negative correlation be-
the SSNR and WER, as it should be since as the SSNR

ses (data becomes less noisy) we would expect the WER
p. From the table, we observe that the smallest absolute
of the correlation coefficient is observed for PMVDR. This
vation leads to the conclusion that the least robust modeling
gy for noise robust in-vehicle speech recognition is MFCC,
PMVDR delivers the greatest level of robustness to noise
gst the three. Thus, we have shown that PMVDR feature
tion methodology is indeed less susceptible to additive
than MFCC and PMCC.
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Figure 3: Scatter plots and 1st order fits for MFCC, PMCC, and
PMVDR

Table 2: Corr. coefs. of SSNR and WER for the 3 front-ends.

Measure/Systems MFCC PMCC PMVDR
Correlation Coef. -0.407 -0.355 -0.309

5.2. Robustness to Speaker Variability
We also claim that the PMVDR scheme better suppresses speaker
dependent information than MFCC and PMCC. This section
aims to evaluate the three feature extraction schemes in terms
of their robustness to speaker variability. We use a modified
Linear Discriminant Analysis (LDA) scheme proposed in [23]
to evaluate the robustness to speaker variability. The scheme is
basically a modified LDA in which we compute the within-class
scatter matrix with respect to speaker variability; therefore, the
LDA objective function is now optimized with respect to speaker
variations on phone classes. For computational details, we refer
the reader to [23, 24].

We would like to have feature vectors such that all vectors
belonging to one class should be compact in the feature space
regardless of the speaker. They should also be well-separated
from the feature vectors of all other classes [23]. A good measure
of this property is the trace of S−1

W SB . Here, SW refers to the
within-class scatter matrix while SB denotes the between-class
scatter matrix. The trace is the sum of the eigenvalues λi of
S−1

W SB[23]. Now we can define a measure for assessing speaker
variability, the trace measure. The interpretation for the trace
measure is that the trace equals the sum of the variances in the
principal directions. It can also be interpreted as the radius of
the scattering volume. The larger the trace is (i.e. the higher
the class separability), the better separated the classes in the
feature space. This leads to the fact that the higher the class
separability, the lower the recognition error rate [23]. The trace
measure is formulated below and used as a measure of inter-
speaker variability within phonemes in this study.

Tr(d) =
c∑

i=1

λi (5)

Where c is the number of classes for which we have data. In Ta-
ble 3, we give the trace measure for MFCC, PMCC and PMVDR
feature extraction schemes. We conclude from the table that
PMVDR shows less speaker variability.

Table 3: Trace measure for different front-ends.

Measure/Systems MFCC PMCC PMVDR
Trace 33.17 34.38 34.58
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6. Conclusions
s paper, we proposed a novel algorithm to compute cep-
oefficients to represent speech for robust in-vehicle speech
nition. We incorporate perceptual considerations directly
e FFT power spectrum and utilize the MVDR spectrum
spectral envelope estimation technique. The envelope is
ed into the cepstral coefficients to have an uncorrelated rep-

tation. The resulting coefficients, PMVDRs, are shown to
rform conventional MFCCs and recently proposed PMCCs
extended digit recognition task in the car. The PMVDR is
n by two separate analyses to be less susceptible to additive
and to be more efficient in suppressing speaker dependent
ation that exists in the spectrum. Thus, the PMVDR is

ective candidate to replace MFCC in future state-of-the-art
h recognition systems working in noisy environments.
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