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Abstract

Acoustic feature extraction from speech constitutes a fundamental component of automatic speech recognition (ASR) systems. In this
paper, we propose a novel feature extraction algorithm, perceptual-MVDR (PMVDR), which computes cepstral coefficients from the
speech signal. This new feature representation is shown to better model the speech spectrum compared to traditional feature extraction
approaches. Experimental results for small (40-word digits) to medium (5k-word dictation) size vocabulary tasks show varying degree of
consistent improvements across different experiments; however, the new front-end is most effective in noisy car environments. The
PMVDR front-end uses the minimum variance distortionless response (MVDR) spectral estimator to represent the upper envelope of
the speech signal. Unlike Mel frequency cepstral coefficients (MFCCs), the proposed front-end does not utilize a filterbank. The effec-
tiveness of the PMVDR approach is demonstrated by comparing speech recognition accuracies with the traditional MFCC front-end and
recently proposed PMCC front-end in both noise-free and real adverse environments. For speech recognition in noisy car environments,
a 40-word vocabulary task, PMVDR front-end provides a 36% relative decrease in word error rate (WER) over the MFCC front-end.
Under simulated speaker stress conditions, a 35-word vocabulary task, the PMVDR front-end yields a 27% relative decrease in the WER.
For a noise-free dictation task, a 5k-word vocabulary task, again a relative 8% reduction in the WER is reported. Finally, a novel anal-
ysis technique is proposed to quantify noise robustness of an acoustic front-end. This analysis is conducted for the acoustic front-ends
analyzed in the paper and results are presented.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Current state-of-the-art speech recognizers perform well
under controlled and clean laboratory conditions. How-
ever, the performance gap between automatic speech rec-
ognizers and human listeners in real world settings is
significant (Huang et al., 2001). Much of the progress in
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recent years have occurred by exploiting more complex
algorithms with the help of faster computing (Hunt,
1999). On the other hand, little progress has been reported
in the development of core speech processing algorithms.
One good example is the wide use of an acoustic front-
end which was proposed more than two decades ago.
Almost all current speech recognition, as well as speaker
recognition systems, use Mel-frequency cepstral coefficients
(MFFCs) as the acoustic front-end (Davis and Mermel-
stein, 1980). Many researchers would agree that there is
still a significant potential in formulating an acoustic
front-end signal that will successfully maintain information
needed for efficient speech recognition, especially in noise,
while eliminating irrelevant information (Hunt, 1999).
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The most crucial information needed for ASR is a repre-

sentation of the vocal tract transfer function (VTTF) (Huang
et al., 2001); therefore, capturing the VTTF while eliminat-
ing other extraneous information (e.g. such as speaker

dependent characteristics, especially pitch harmonics) is a
key requirement for a good acoustic front-end (Hunt,
1999; Gu and Rose, 2001). The VTTF is mainly encoded
in the short-term spectral envelope (Jelinek and Adoul,
1999) and extracting the short-term spectral envelope accu-
rately and robustly is important for high performance
ASR. Moreover, incorporating perceptual considerations,
such as Mel and Bark scales, into the acoustic front-end
leads to improved accuracy (Davis and Mermelstein,
1980; Hermansky, 1990).

MFCCs (Davis and Mermelstein, 1980) have proven to
be one of the most effective features for ASR. They are
computed by applying a Mel-scaled filterbank either to
the short-term FFT magnitude spectrum or to the short-term

LPC-based spectrum to obtain a perceptually meaningful
smoothed gross spectrum. Both FFT and LPC-based spec-
tra, however, have a limited ability to remove undesired
harmonic structure, especially for high pitched speech
(Jelinek and Adoul, 1999; Gu and Rose, 2001). FFT-based
MFCCs have also been shown to be less effective for
stressed speech recognition than LP-based MFCCs pri-
marily due to the changes in excitation characteristics
(Bou-Ghazale and Hansen, 2000). Moreover, MFCCs are
quite fragile in noise, and additional compensation, such
as feature enhancement and model adaptation, is needed
for acceptable performance in realistic environments (Han-
sen et al., 2001b; Yapanel et al., 2002; CU-Move, 2004).

Direct upper envelope estimation algorithms using
pitch-synchronous analysis and peak-picking techniques
for computing the upper envelope have shown promise.
However, they are both computationally expensive and
prone to non-robust behavior in noisy conditions (Jelinek
and Adoul, 1999; Gu and Rose, 2001).

Minimum variance distortionless response (MVDR) spec-
trum has been shown to be a superior way of modeling
speech compared to linear prediction (LP), especially for
medium and high-pitched speech (Murthi and Rao,
2000). Its potential for application in a robust front-end
is also explored in (Dharanipragada and Rao, 2001;
Yapanel and Dharanipragada, 2003).

This paper proposes a new acoustic front-end based
on the MVDR spectrum estimation method. The
front-end is algorithmically very similar to the PMCC
front-end but differs in the incorporation of perceptual
considerations. In the earlier approaches (Dharaniprag-
ada and Rao, 2001; Yapanel and Dharanipragada,
2003), the perceptual scales were integrated through the
use of a non-linearly spaced filterbank, in the PMVDR
front-end, on the other hand, this step is eliminated by
directly warping the FFT power spectrum. As demon-
strated through experimentation, the PMVDR front-end
produces better results for clean and adverse environ-
ments due to (Yapanel and Hansen, 2003) its ability to
accurately model the upper spectral envelope at the
perceptually important harmonics.

The remainder of this paper is organized as follows. In
Section 2, basics of the MVDR spectral modeling are
explained. Section 3 summarizes two recently proposed
front-ends based on the MVDR method. We introduce
the PMVDR front-end in Section 4 and explain its imple-
mentation in detail. Experimental evaluation of this new
front-end is discussed in Section 5. After taking computa-
tional issues into consideration in Section 6, we conclude
the paper with a noise-robustness analysis in Section 7.

2. Minimum variance distortionless response (MVDR)

spectrum

The MVDR technique is widely used in the beamform-
ing literature; however, its application to speech modeling
is quite recent (Murthi and Rao, 2000). The MVDR spec-
trum is a good way of performing all-pole modeling on the
speech spectrum. Unlike the FFT analysis where fixed
bandpass filters are used regardless of the characteristics
of the incoming signal, MVDR obtains the power spectrum
estimates by using data-dependent bandpass filters (Capon,
1969). The clever design of the bandpass filters is the key to
the good spectral characteristics of the MVDR approach.
The signal power at a frequency xl, is computed by filter-
ing the signal with a special filter, hlðnÞ. The power at the
frequency xl, is determined by measuring the output power
of the filter hlðnÞ. The Mth order FIR filter hlðnÞ, is
designed to minimize its output power subject to the
constraint that its frequency response at the frequency of
interest xl, have unity gain (Haykin, 1991; Murthi and
Rao, 2000).

Obtaining the MVDR spectrum at all frequencies of
interest may seem a rather costly operation because it
requires a special filter design for each frequency. However,
the MVDR spectrum for all frequencies can be conve-
niently represented in a parametric form and the parame-
ters, lðkÞ, hence the MVDR spectrum, can be easily
obtained by a modest non-iterative computation proposed
by Musicus (1985). lðkÞs are computed from the LP coeffi-
cients, afig and the prediction error variance P e as follows:

P ðMÞMV ðxÞ ¼
1PM

k¼�MlðkÞe�jxk
¼ 1

jBðejxÞj2
; ð1Þ

lðkÞ ¼
1

P e

PM�k

i¼0

ðM þ 1� k � 2iÞaia�iþk; k : 0; . . . ;M ;

l�ð�kÞ; k : �M ; . . . ;�1:

8<
:

ð2Þ
2.1. Use of MVDR for all-pole voiced speech modeling

The word ‘‘modeling’’ in the speech recognition context
refers to the ability of extracting reliable spectral envelopes.
We will cite two important results here from (Murthi
and Rao, 2000) and interpret them in order to better
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understand why the MVDR spectrum is a preferred
method of envelope estimation for voiced speech.

1. The MVDR spectrum of order M ¼ ð2L� 1Þ provides
an envelope that exactly models the powers of a sym-
metric discrete line spectrum consisting of L lines, or
harmonics (Murthi and Rao, 2000). Therefore, for
voiced speech, although not an ideal line spectrum, the
MVDR of order M ¼ ð2L� 1Þ will accurately model L

harmonic powers that are spaced at multiples of the fun-
damental frequency.

2. The MVDR spectrum accurately models the peaks in
the speech spectrum by successfully connecting the spec-
tral peaks to form the spectral envelope (Murthi and
Rao, 2000). Therefore, we can now rightfully refer to
this envelope as the upper spectral envelope and claim
that it will be robust in moderate-SNR noisy environ-
ments. This is due to the fact that most of the noise types
that we encounter in the practical implementations (e.g.
car noise) will have a more pronounced impact on the
low energy portions of the spectrum, leaving the spectral
peaks almost unaffected, and hence the MVDR enve-
lope, should not be affected severely by additive noise.

For more details on the MVDR spectrum estimation
and its suitability to speech modeling, we refer readers to
(Murthi and Rao, 2000; Yapanel, 2005).
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3. Previous MVDR-based acoustic front-ends

Several studies have considered incorporating the merits
of MVDR spectrum into the speech recognition framework
(Dharanipragada and Rao, 2001; Yapanel and Dharani-
pragada, 2003; Yapanel et al., 2003; Wolfel et al., 2003).
The first use of MVDR in speech parameterization was
for power spectrum estimation (Dharanipragada and
Rao, 2001). In (Dharanipragada and Rao, 2001), the
FFT spectrum in the MFCC computation method was
simply replaced by a high-order MVDR spectrum. The
remainder of the feature extraction algorithm was the same
as the MFCC front-end, therefore these features are called
MVDR-based MFCCs (MVDR-MFCCs) (i.e., see Fig. 1).
Also Dharanipragada and Rao (2001) incorporated a sec-
ond step for cepstral smoothing to reduce the variances
of the feature vectors which was also shown to be useful.
One obvious disadvantage is the high computational bur-
den imposed by the high-order MVDR spectrum computa-
tion method and cepstral averaging. A generic diagram for
computing the MVDR-MFCCs are given in Fig. 1.

A second study employing MVDR methodology for fea-
ture extraction is (Yapanel and Dharanipragada, 2003;
Yapanel et al., 2003). The features developed in (Yapanel
and Dharanipragada, 2003; Yapanel et al., 2003) are called
Perceptual MVDR-based cepstral coefficients (PMCCs). In
the PMCC front-end, the MVDR methodology is used
mming

# filters

WING MVDR Log |  .  |

DCT MEL−FILTERS

Model order

ERAGE

VDR–MFCC front-end.

LP−to−MVDRFFT Conversion

Model order

|FFT|2 (Optional)
K−pt AVERAGE IFFTFILTERS

MEL

# filters

Levinson−Durbin

the PMCC front-end.



2

TEMPORAL
DERIVATIVES

FRAME
BLOCKING

Δc

ΔΔc

c

s
IFFT|FFT|WINDOWING Perceptual

Warping

Log
Compression

IFFT Levinson
Durbin

Hamming

"Perceptual"
Autocorrelation

win_size shift

FFT

 PRE−
EMPHASIS

Model order(P)

Warping Parameter (α)

Conversion
LP−to−MVDR

Fig. 3. Schematic diagram of PMVDR front-end.

U.H. Yapanel, J.H.L. Hansen / Speech Communication 50 (2008) 142–152 145
for spectral envelope extraction rather than for spectrum
estimation. It was shown that using the MVDR for spectral
envelope extraction is more successful and yields better
accuracy on the IBM in-car speech recognition task (Yapan-
el and Dharanipragada, 2003) and the Wall Street Journal

(WSJ) task (Yapanel et al., 2003). The implementation of
Perceptual MVDR-based Cepstral Coefficients (PMCCs)
is very similar to PLP in that they both represent the spec-
tral envelope using an all-pole model. However, the use of
the MVDR-based and not the LP-based envelope in the all-
pole modeling stage provides a measurable difference in
performance for real car noise conditions (Yapanel and
Dharanipragada, 2003). PMCCs were later utilized for
clean speech recognition on the Wall Street Journal
(WSJ) database and also shown to be more effective than
the conventional MFCCs (Yapanel et al., 2003). Since it
was shown that the PMCC approach substantially outper-
forms the MVDR–MFCC and PLP approaches (Yapanel
and Dharanipragada, 2003; Yapanel et al., 2003), we con-
sider only the PMCC front-end as baseline comparison in
this study. A generic flow diagram for the PMCC front-
end is given in Fig. 2.

4. Description of PMVDR

Previous approaches to integrating MVDR into speech
parameterization for ASR involved using MVDR as a
spectrum estimation (Dharanipragada and Rao, 2001)
and as an envelope estimation technique (Yapanel and
Dharanipragada, 2003; Yapanel et al., 2003). Different
from the earlier approaches, PMVDR front-end com-
pletely removes the filterbank processing step and directly
performs warping on the FFT power spectrum. The remain-
der of the algorithm is similar to the PMCC front-end
(Yapanel and Dharanipragada, 2003; Yapanel et al.,
2003). Our new approach is named PMVDR which stands
for perceptual MVDR cepstral coefficients.

4.1. Direct warping of the FFT spectrum

Using a non-linearly spaced filterbank to incorporate
perceptual traits into the acoustic front-end is a
well-established technique (Davis and Mermelstein, 1980;
Hermansky, 1990). The main aim of the filterbank is to aver-
age out the harmonic information (i.e., the pitch) that exists
in the FFT spectrum and to track the spectral envelope. Since
the filters are spaced closely at low frequencies, the effective-
ness of filterbank in smoothing the pitch information is
significantly reduced for high-pitch speakers. Therefore, the
filterbank produces a gross spectrum that carries substantial
pitch information which is not desirable for speaker-indepen-
dent ASR applications (Gu and Rose, 2001). It was shown
that MVDR is an appropriate spectral envelope modeling
approach for a broad range of speech phoneme classes, espe-
cially for high-pitched speech (Murthi and Rao, 2000) There-
fore, we can conclude that for an MVDR-based feature
extraction algorithm, it is both useful and safe to remove
the filterbank structure and incorporate the perceptual con-
siderations directly into the FFT spectrum.

One way of incorporating perceptual considerations is
to implement the perceptual scale through a first order

all-pass system (Tokuda et al., 1994; Smith and Abel,
1999). This approach is simple and feasible for our pur-
pose. In fact, both Mel and Bark scales are determined
by changing the single parameter a of the system (Tokuda
et al., 1994). The form, HðzÞ, and the phase response, x̂, of
the first order system are given as,

HðzÞ ¼ z�1 � a
1� az�1

; jaj < 1; ð3Þ

x̂ ¼ tan�1 ð1� a2Þ sinðxÞ
ð1þ a2Þ cosðxÞ � 2a

; ð4Þ

where x represents the linear frequency, while x̂ represents
the warped frequency. Here, the value of a controls the de-
gree of warping. We are more interested in the non-linear
phase response through which we implement the perceptual
warping. For 16 kHz sampled signals, we set a ¼ 0:42 and
0.55 to approximate the Mel and Bark scales, respectively.
For 8 kHz, these values are adjusted to a ¼ 0:31 and 0.42
(Tokuda et al., 1994). Bark scale performs more warping
in the lower frequencies when compared to the Mel scale.

We note that alternative frequency spacing of the Mel
filterbank has been shown to be effective for speech recog-
nition under stress (Bou-Ghazale and Hansen, 2000) and
automatic accent classification (Arslan and Hansen,
1996). Comparable shifts could also be incorporated into
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the PMVDR computations for robust speech classification/
recognition.

4.2. Implementation of direct warping

Warping via interpolation is a simple and fast method to
implement direct warping. We would like to obtain the
value of the power spectrum in the warped frequency space
x̂ by using its corresponding value in the linear frequency
space, x. The inverse relation that takes us from the
warped to linear frequency space can be easily obtained
from Eq (4) by replacing a with �a,

x ¼ tan�1 ð1� a2Þ sinðx̂Þ
ð1þ a2Þ cosðx̂Þ þ 2a

: ð5Þ

A step-by-step algorithm that describes how warping can
be efficiently implemented via interpolation can be given
as follows:

1. Take the FFT of the input speech frame of length N to
obtain the FFT power spectrum. N should be selected as
the nearest possible power of 2, thus providing N spec-
tral points (i.e., S½k�; k ¼ 0; . . . ;N � 1) in linear power
spectrum space.

2. Calculate N linearly spaced spectral points over the
warped frequency space by dividing the entire 2p
warped frequency range into N equi-spaced points,

x̂½i� ¼ 2ip=N ; i ¼ 0; . . . ;N � 1: ð6Þ
3. Compute the linear frequencies and FFT indexes that

corresponds to these warped frequencies using

x½i� ¼ tan�1 ð1� a2Þ sinðx̂½i�Þ
ð1þ a2Þ cosðx̂½i�Þ þ 2a

;

i ¼ 0; . . . ;N � 1; ð7Þ

k̂½i� ¼ x½i�N
2p

; i ¼ 0; . . . ;N � 1: ð8Þ

4. For the final step, perform an interpolation of the near-
est linear spectral values to obtain the warped spectral
value

kl½i� ¼ minðN � 2; k̂½i�Þ; i ¼ 0; . . . ;N � 1; ð9Þ
ku½i� ¼ maxð1; kl½i� þ 1Þ; i ¼ 0; . . . ;N � 1; ð10Þ
bS ½i� ¼ ðku½i� � k̂½i�ÞS½kl½i�� þ ðk̂½i� � kl½i�ÞS½ku½i��; ð11Þ
where kl½i� is the lower nearest linear FFT bin, ku½i� is the
nearest upper linear FFT bin and bS ½i� is the value of the
warped power spectrum that corresponds to FFT bin i.
Thus, the spectral value bS ½i�, at the warped frequency in-
dex k̂½i�, is computed as the linear interpolation of near-
est upper, S½ku½i��, and lower, S½kl½i��, spectral values in
the linear frequency space.

4.3. PMVDR algorithm

The proposed PMVDR algorithm can be summarized as
follows:
1. Obtain the perceptually warped FFT power spectrum
via interpolation.

2. Compute the ‘‘perceptual autocorrelations lags’’ by tak-
ing the IFFT of the ‘‘perceptually warped’’ power
spectrum.

3. Perform an Mth order LP analysis via Levinson–Durbin
recursion using perceptual autocorrelation lags (Mak-
houl, 1975; El-Jaroudi and Makhoul, 1991; Haykin,
1991).

4. Calculate the Mth order MVDR spectrum using Eq. (2)
from the LP coefficients (Murthi and Rao, 2000).

5. Obtain the final cepstrum coefficients using the straight-
forward FFT-based approach (Oppenheim and Schafer,
1989). In this approach, after obtaining the MVDR
coefficients from the perceptually warped spectrum, we
take the FFT of the parametrically expressible MVDR
spectrum. After taking log, we apply IFFT to return
back to the cepstral domain.

6. Take the first N, generally 12 excluding 0th cepstrum,
cepstral coefficients as the output of the PMVDR
front-end. This is the cepstral truncation step.

A flow diagram for the PMVDR algorithm is given in
Fig. 3. The algorithm is integrated into our recognizer as
the default acoustic front-end and the source code and
executables can be obtained from CSLR web site (CSLR,
2004) together with SONIC (Pellom, 2001; Pellom and
Hacioglu, 2003; CSLR, 2004).

4.4. Robust estimation of short-term spectral envelope

We ran an experiment to illustrate that the PMVDR
envelope is in fact less susceptible to noise due to its upper
envelope modeling property. For the same voiced sound
frame, we computed MFCC and PMVDR cepstrum vec-
tors for both clean and 5 dB car noise corrupted frames.
We give clean (solid) and noisy (dash-dotted) cepstrum
vectors in Fig. 4. Severe deviation of MFCCs from the
clean case is apparent. The whole feature vector is moved
upwards with the added car noise. This kind of deviation
is rather dangerous because the deviations are substantial
from the mean. The HMMs has both means and variances
to model small variations in speech sounds and they are
able to compensate for small deviations around the mean
but they cannot tolerate this type of movement away from
the mean. We computed a 73.9% average deviation from
the mean in the noisy case from the clean case which quan-
tifies the significance of the effect of noise on the MFCC
cepstrum vector. In Fig. 4b, the variation of PMVDR cep-
strum vector is given. The variations are small compared to
the MFCC case and most importantly they are around the
mean so the HMMs can cope with this type and amount of
variation more easily. The average deviation from the
mean in noisy conditions is 33.7% which is much less than
the MFCCs’ average variation. This experiment is a good
evidence of the fact that upper envelope modeling property
of the PMVDR front-end is indeed the key point to its
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success for robust speech recognition. Note that in order to
clearly illustrate the effects of the noise, neither mean nor
variance normalization is utilized. However, throughout
all the experimentation presented in this paper, we utilize
cepstral mean normalization (CMN) by default for all
front-ends.
5. Experimental framework

In order to test the effectiveness of the PMVDR front-
end, recognition experiments were performed on three dif-
ferent databases that address different adverse conditions.
The databases used in the simulations are: (a) CU-Move

Extended Digits Database (CU-Move, 2004), for real noisy
in-car environments; (b) Speech Under Simulated and

Actual Stress (SUSAS) (LDC-SUSAS, 2004), for simu-
lated stress conditions; and (c) Wall Street Journal

(WSJ) (LDC-WSJ, 2004), for noise-free conditions. These
databases cover a somewhat broad range of conditions
which a recognizer might encounter in real-life
applications.
5.1. General system description

For all experiments, we use SONIC (Pellom, 2001;
Pellom and Hacioglu, 2003), the University of Colorado’s
Large Vocabulary Speech Recognition System. SONIC is
a continuous density hidden Markov model (CDHMM)
based recognizer. The acoustic models are decision-tree
state-clustered HMMs with associated Gamma probability
density functions to model state-durations. We used a win-
dow length of 25 ms and a skip rate of 10 ms by Hamming
windowing the frame data before further processing. The
39 dimensional feature set contains 12 statics, deltas and
delta-deltas along with normalized-log energy, delta and
delta–delta energy. Cepstral Mean Normalization (CMN)
was utilized on the final feature vectors for all front-ends
considered in this paper. All HMMs have left-to-right
topology with no skips and each state was represented by
6–24 mixtures depending on the available training data.
During training, we fixed the state alignments for all
front-ends, i.e. we did not re-align the training data with
each front-end.
5.2. Experiments for noisy speech

For noisy speech experiments, we use the CU-Move
Extended Digits Corpus which was collected in real car
environments. The CU-Move project (CU-Move, 2004)
aims to invent and develop car navigation systems that
are reliable and employ a mixed-initiative dialog. This
requires reliable speech recognition across changing acous-
tic conditions. There are 5 parts in the database; command

and control words, digit strings being mostly phone num-
bers, street addresses with mostly spellings, phonetically

balanced sentences and Wizard of Oz interactive navigation
conversations. A total of 500 speakers produced over
600 GB of data during the 6-month collection effort across
the United States. The database and noise conditions are
analyzed in (Hansen et al., 2001a) in detail. We would like
to emphasize that the noise conditions are changing with
time in terms of SNR, stationarity and spectral structure.
The SNR analysis presented in (Yapanel et al., 2002)
revealed that the segmental SNR may change as much as
10 dB in real car environments for the only digits portion
of this speech corpus.

A total of 60 speakers balanced across gender and age
(18–70 yr old) were used in the training set. The test set
contained another 50 speakers, again gender- and age-bal-
anced. The HMMs were trained using SONIC’s decision-
tree HMM trainer resulting in 444 models with 513 total
clustered states and around 10 K total Gaussians. The
vocabulary size was 40. The dictionary is very convenient
for telephone dialing applications since it contains many



Table 1
WERs (%) for CU-Move task with different front-ends

Gender/Systems MFCC PMCC PMVDR Rel. Imp.

Female 9.16 7.85 5.47 40.3
Male 13.22 12.03 10.16 23.1

Overall 11.12 9.87 7.74 30.4
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necessary words like ‘‘dash’’, ‘‘pound’’, ‘‘sign’’ in addition
to numbers. We compare the performance of PMVDR
with previously proposed PMCC and the classical MFCC
front-ends. As the first attempt we used a logical set of set-
tings, i.e. Mel scale for the perceptual warp and a high
enough LP order for LP analysis, for PMVDR. For the
perceptual warp, we chose the Mel warp and pick the anal-
ysis order to be high enough to retain sufficient information
for recognition while limiting speaker dependency of the
features. The recognition performance for different front-
ends in terms of WERs are given in Table 1 together with
the relative improvements of PMVDR over the MFCC
front-end. PMVDR decreases the WER by 30.4% relative
to MFCC and 21.5% relative to PMCC front-ends.

We form a 17-speaker development set in order to opti-
mize the PMVDR parameters. The development set does
not overlap with train and test sets. The results verify that
the PMVDR is more effective than MFCC and PMCC,
especially for female speakers which are known to have
high-pitched speech. We point out that while PMCC and
PMVDR both use the MVDR representation for spectral
envelope estimation, they differ in that PMVDR features
use direct perceptual warping of the spectrum and does
not require the use of a filterbank within the front-end.
Hence the results support that using MVDR as an envelope
estimation without a resolution decreasing filterbank leads
to a better front-end for noisy environments.

5.2.1. Optimization of PMVDR parameters

PMVDR has two parameters, namely the LP order and
perceptual warp, that can be optimized for different tasks.
This could be an advantage for a front-end. Different tasks,
such as accent classification (Arslan and Hansen, 1996)
may require the use some other non-linear scaling of the
spectrum for better performance. This scale optimization
can be easily achieved within the PMVDR framework by
simply adjusting the perceptual warp parameter ðaÞ. In
the MFCC framework, one has to re-design the non-line-
arly spaced filterbank (Arslan and Hansen, 1996) to
achieve the same effect. A second possibility is the integra-
tion of efficient speaker normalization algorithms within
the PMVDR front-end. This possibility is demonstrated
in (Yapanel and Hansen, 2005) where the perceptual warp
factor is estimated separately for each speaker.

The two parameters of the PMVDR front-end can be
logically related to two important characteristics of speech.
The LP order used in the analysis is directly related to the

pitch period of the speaker, for high-pitched speakers, we
see less harmonics in the spectrum and we need a smaller
order to sufficiently represent these harmonics (See (Murthi
and Rao, 2000) for a detailed explanation of this claim).
For low-pitched speakers, we see more harmonics in the
spectrum and hence need a higher model order. This leads
to a trade-off in model order selection since a compromise
model order is needed to model both female and male
speakers. A similar balance trade-off exists for the percep-
tual warp factor used to warp the FFT spectrum. The warp
factor can be related to the length of the vocal tract. In fact,
several speaker normalization algorithms exist using the
same class of first-order warping functions for speaker nor-
malization (McDonough et al., 1998). In the PMVDR case,
these first-order warping functions are used to incorporate
perceptual considerations. For females the vocal tract is
shorter which, in turn, moves the formant frequencies
higher. Therefore we do not want to expand low frequency
region severely in order not to move the formants further
away. However, for male speakers the situation is reversed.
Male speakers have longer vocal tract lengths which causes
the formants to move down in frequency and it is better to
expand especially the low frequency space. The optimal
warp is again a mid-point which aligns average male formant

with average female formant positions as closely as possible.
We performed recognition experiments on the 17-

speaker development set in order to determine the optimal
settings for the CU-Move task. The variation of the WER
with the LP analysis order is depicted in Fig. 5. During the
experimentation we fixed the perceptual warp factor to be
the Mel scale (i.e., a ¼ 0:42). WER for males and females
follow a similar trend. For orders below 20, the WER
increases as the LP analysis order is reduced and after 20,
it is stabilized. This may seem contrary to our earlier



Table 2
WERs (%) for CU-Move task with PMVDR Optimized settings

Gender/Systems MFCC PMCC PMVDR Rel. Imp.

Female 9.16 7.85 5.57 39.2
Male 13.22 12.03 8.76 33.7

Overall 11.12 9.87 7.11 36.1
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discussion because of the final cepstral truncation part
in the PMVDR computation. However, we are only using
the first 12 PMVDR cepstrum coefficients regardless of the
LP order by ignoring the rest. Increasing the LP order
means increasing the detail in the spectrum. However, the
cepstral truncation has a reverse smoothing effect on the
spectrum. Therefore, after some order, added detail by
the increased LP order will be smoothed out by the cepstral
truncation stage and thus will have very limited effect on
the WER. We see this behavior clearly in Fig. 5. After an
order of 20, increasing the LP order does not affect the
WER substantially. Orders lower than 20, however, do
not adequately represent the vocal tract information
needed for recognition. The optimal LP order is found to
be 24 for this particular task, but as mentioned earlier
any order higher than 20 works well for 16 kHz sampled
speech. We note that increasing the LP order unnecessarily
only wastes CPU resources with no explicit gain in the
performance.

After fixing the LP order to be 24, we next perform
experiments to optimize the perceptual warp factor. The
variation of WER with perceptual warp factor is depicted
in Fig. 6. The selected perceptual warp factor must balance
the best performance between male and female vocal tracts.
The Mel scale ða ¼ 0:42Þ is near optimal warp for female
speakers but far from being optimal for male speakers.
The optimal warp is a ¼ 0:48 for female speakers and
a ¼ 0:57 for male speakers. Larger perceptual warp values
for male speakers is an attempt to move the formants
higher in frequency so that they are better aligned with
those of female speakers. The optimal overall warp is again
found to be a ¼ 0:57. At this warp, the WERs for female
and male speakers are at the same level. Also, the car noise
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Fig. 6. Variation of WER (%) with the perceptual warp parameter ðaÞ,
females (dashed), males (dash-dotted) and overall (solid).
as well as many other noise sources are concentrated at
lower frequencies and this may have an impact on the opti-
mal perceptual warp factor for the database under study
(i.e., CU-Move corpus here).

Thus the optimal settings for the CU-Move task is
found as a ¼ 0:57 and M ¼ 24. The WER performance
of the optimal settings on the test set are given in Table 2
together with the relative improvements over MFCCs.
5.3. Experiments for stressed speech

The performance of speech recognition systems degrade
under the presence of stress (Hansen, 1996). Different
speaking styles, such as fast, slow, question, soft, etc., have
also a negative effect on the ASR performance. Therefore,
it is informative to evaluate the proposed PMVDR front-
end for speaker stress and different speaking styles as
another adverse environment. Stressed speech in this con-
text refers to the speech produced under environmental,
emotional or workload stress. Depending on the type of
stress, the fundamental frequency, duration, intensity effects,

glottal source, and vocal tract frequency structure are all
affected in different ways (Hansen, 1996). For example,
for speech under angry conditions, the distribution of
fundamental frequency expands substantially, the percent-
age of time spent in vowels and the corresponding amount
of energy significantly increases at the expense of decrease
in the percentage of time spent in consonants and conso-
nant energy. The glottal spectral slope becomes more flat
and formant locations as well as bandwidths are almost
always statistically different from neutral conditions (Han-
sen, 1996; Bou-Ghazale and Hansen, 2000).

The speech data employed in this section is obtained
from the SUSAS database (Hansen and Bou-Ghazale,
1997). SUSAS contains speech data produced under actual
and simulated stress conditions across different speaking
styles. Since the actual stressed speech part is also noisy,
we decided to use only the simulated stress part in order
to evaluate the robustness of the proposed PMVDR
front-end. Simulated stress conditions include neutral,

angry, loud, clear, and, Lombard. Lombard effect speech
was obtained by having speakers listen to 85 dB SPL pink
noise through headphones while speaking (i.e., recordings
are noise-free). Different speaking styles include fast, slow,
soft, and question. The simulated stress portion of the
database consists of isolated words uttered by nine speak-
ers. A common vocabulary set of 35 aircraft communica-
tion words make up over 95% of the database. These



Table 4
WERs (%) for the WSJ November’92 Evaluation test set

Gender/Systems MFCC PMCC PMVDR Rel. Imp.

Female 6.99 5.93 5.35 23.5
Male 4.17 4.35 4.50 �7.9

Overall 5.22 4.93 4.82 7.6
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words consist of highly confusable mono- and multi-syl-
labic words. Examples include /go-oh-no/, /wide-white/,
and /six-fix/. Twelve tokens of each word in the vocabulary
were spoken by nine native American speakers for the neu-
tral conditions and two tokens for each stress and speaking
style condition. Although the tokens are isolated words, we
choose to train sub-word units in order to generalize our
results to LVCSR applications. We trained left-to-right
decision-tree state clustered HMMs using all available
training data from all speakers under neutral conditions.
Afterwards, the neutral-trained HMMs are tested against
simulated stress conditions and different speaking styles.
The HMM model set included 480 sub-word recognition
units. The total number of Gaussians required was close
to 5 K. We used the following simulated stress conditions
and speaking styles in our evaluations; neutral, angry, high
workload stress (cond 70), fast, slow, Lombard, loud, soft
and question. We used MFCC front-end as the baseline.
The PMCC acoustic front-end is also evaluated for this
task with an LP order of 22. The PMVDR settings were
M ¼ 24 and a ¼ 0:31 (corresponds to the Mel scale) for
the stressed-speech recognition task. We only ran two
experiments using Mel and Bark scales for the perceptual
warp factor and did not perform extensive optimization
as in the CU-Move task. This was partly because of lack
of data to form a separate development set. Note that using
the Mel scale for this task yielded slightly better results than

the Bark scale. The recognition performance and the rela-
tive improvements of PMVDR with respect to MFCC
are summarized in Table 3. The Neutral condition repre-
sents the matched case in terms of stress.

The PMCC front-end yields a 10% improvement relative
to the MFCC baseline. However, the PMVDR front-end is
able to better address the stress and different speaking
styles with a 27.8% relative improvement over the MFCC
baseline. Although the amount of improvement depends
on the stress type or speaking style considered, there are
consistent improvements for every condition.
5.4. Experiments for clean speech

The task is noise-free read speech recognition with 5 K
vocabulary on the well-known WSJ database. The sam-
Table 3
WERs (%) for SUSAS database over different stress types

Type/Systems MFCC PMCC PMVDR Rel. Imp.

Neutral 3.66 3.97 3.02 17.5
Angry 50.79 50.79 36.98 27.2
Cond70 4.30 3.83 2.86 33.5
Fast 11.27 10.78 11.12 1.3
Slow 26.19 24.94 24.61 6.0
Lombard 12.07 9.67 5.86 51.5
Loud 38.72 32.07 26.49 31.6
Soft 18.90 17.63 12.66 33.0
Question 20.31 13.97 10.78 46.9

Overall 20.69 18.62 14.93 27.8
pling rate of the database is 16 kHz. The training set is
the SI-84 and the test set is the official Nov’92 final eval

set. The final eval set includes three female and five male
speakers with a total of 330 utterances. The total number
of Gaussians was around 50 K for 612 decision-tree
HMMs with around 2400 clustered states. The decoding
was performed with gender-independent HMMs. We tabu-
lated our results with MFCC, PMCC and PMVDR in
Table 4 together with the relative improvements of
PMVDR over MFCC. Note the improvement for female

speakers clearly supporting the claim that MVDR is espe-
cially effective for medium and high-pitched speech (Mur-
thi and Rao, 2000; Dharanipragada and Rao, 2001).

6. Computational aspects

Computational performance can be considered under
two main categories; namely the number of operations
(NOP) required to compute the feature vector per frame,
and the total real-time factor (RTF) required for the recog-
nition test. The first is closely related to the algorithm of
the feature set. The latter is tied to the properties of the fea-
tures, such as suppression ability of noise and speaker vari-
abilities. We summarize the NOP1 and the real-time factors
(RTFs) for MFCC, PMCC, and PMVDR front-ends on
the WSJ task in Table 5.

The performance gain observed consistently for
PMVDR comes at a computational price. The number of
operations with respect to MFCC is now doubled. How-
ever, the PMVDR makes up for this loss in the search stage
of the recognition. Better envelope modeling properties and
robustness to noise and speaker variations leads to more
efficient pruning in the search. This, in turn, yields a
CPU gain of 14% relative over the MFCC baseline. Thus,
we conclude that the PMVDR is also computationally trac-
table and suitable for both off-line and real-time ASR
applications.

7. Noise-robustness analysis

Obtaining acceptable recognition performance in noise
is a desirable property of a feature extraction algorithm.
However, for a real in-car noisy database such as CU-
Move, identifying the sources of improvement is rather
difficult. We believe that an analysis should be performed,
in addition to citing the final recognition results. We now
1 Based on a 25 ms (or 400-sample) window at 16 kHz and a 50%
overlap between consecutive frames.



Table 6
Correlation coefficients of SSNR and WER for the 3 front-ends analyzed

Measure/Systems MFCC PMCC PMVDR

Correlation Coef. �0.29 �0.25 �0.19

Table 5
Computational complexity and RTFs for different front-ends

Step/# Operations MFCC PMCC PMVDR

Windowing 400 400 400
jFFT j2, N = 512 512� log2ð512Þ þ 512 512� log2ð512Þ þ 512 512� log2ð512Þ þ 512
Perceptual Warping N/A N/A 4 � 257
IFFT, N = 512 N/A N/A 512� log2ð512Þ
Filterbank (P = 24) 2� 257 2� 257 N/A
MVDR (M = 22) N/A 2� 222 2� 222

FFT, N = 128 N/A 128� log2ð128Þ 128� log2ð128Þ
log Ignored Ignored Ignored
IDCT 24 · 13 N/A N/A
IFFT, N = 128 N/A 128� log2ð128Þ 128� log2ð128Þ
TOTAL NOP 6346 8794 12,888
TOTAL RTF 2.16 1.90 1.87
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present an analysis technique which aims to quantify the
noise robustness of an acoustic front-end.2 In order to
perform the noise robustness analysis, we will use Segmental

SNR (SegSNR) (NIST, 2004) versus word error rate
(WER) (Yapanel et al., 2002). For the proposed method
of evaluation, we can summarize the steps as follows:

1. Segment the test set using an aligner tool. The segmen-
tation level is basically a speech-silence detection. We
used SONIC’s aligner tool (Pellom, 2001) to align the
data and extract speech-silence segmentation from the
phone alignments.

2. Use NIST’s SegSNR utility (NIST, 2004) to compute
SegSNR for each utterance. The SegSNR calculation
utility produces a sufficiently accurate SNR estimate
for our purpose.

3. Average the SegSNR for each speaker and generate a
scatter plot of the SegSNR versus WER for the entire
test set.

The resulting plot is a measure of dependency between
the SegSNR and WER. We propose to use the correlation

coefficient, q, to evaluate the degree of this dependency. For
a truly noise robust feature extraction algorithm, the corre-
lation of SegSNR and WER should be close to 0. The smal-

ler the correlation coefficient, the more robust the acoustic

front-end is to the background noise.
We performed this analysis for three different acoustic

front-ends, namely MFCC, PMCC and PMVDR. The cor-
relation coefficients are summarized in Table 6. There is a
negative correlation between the SegSNR and WER, as
expected because while the SegSNR increases (data
becomes less noisy) we would expect the WER to decrease.
From the table, we observe that the smallest absolute value
of the correlation coefficient is observed for PMVDR. This
observation leads to the conclusion that the most fragile
2 This approach to quantifying noise robustness was first proposed in
(Yapanel and Hansen, 2003) and also used by CSLR for NRL-SPINE
evaluation studies (Hansen et al., 2001b).
modeling strategy in noise is MFCC, while PMVDR deliv-
ers the greatest level of noise robustness among the three.

8. Conclusions

In this paper, we proposed a new acoustic front-end,
PMVDR, for ASR Systems. The proposed PMVDR
front-end performs better than the conventional MFCC
front-end and previously proposed PMCC front-end for
a number of tasks including WSJ clean speech dictation
task. Although PMVDR front-end is computationally
more demanding than the MFCC front-end, it compen-
sates for this loss in the search. Better acoustic modeling
properties of the PMVDR front-end leads to considerable
gains in real-time factors required for recognition.

Another important issue is the optimal values for the
two parameters of the PMVDR front-end, namely the
LP analysis order ðMÞ and the perceptual warp factor
ðaÞ. It was found that the LP order does not have much
influence on the recognition accuracy provided that it is
chosen larger than 20. Choosing a too large order
increases computational load with no additional
improvement in the WER. Therefore, we decided that
an LP order of 22 or 24 is ideal for the PMVDR
front-end. For the perceptual warp factor ðaÞ, we found
different optimal values for different tasks. However, one
useful observation is that if the task is noisy choosing
the a close to the Bark scale provides substantial
improvements over the Mel scale but for clean speech
recognition tasks, using Mel scale provides slightly better
results than using the Bark scale. However, we want to
note that if the warp factor ðaÞ is chosen within the
[Mel, Bark] scale range, results are substantially better
than the MFCC front-end and specific value of a is
not very crucial.
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