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Abstract

Automatic Speaker Verification (ASV) systems are prone to
spoofing attacks of various kinds. In this study, we explore
the effects of different features and spoofing algorithms on a
state-of-the-art i-vector speaker verification system. Our study
is based on the standard dataset and evaluation protocols re-
leased as part of the ASVspoof 2015 challenge. We compare
how different features perform while detecting both genuine
and spoofed speech. We observe that features that contain phase
information (Modified Group Delay based features) are better
in detecting synthetic speech, and give comparable performance
when compared to standard MFCCs. We report an anti-spoofing
system that performs well both on known as well as unknown
spoofing attacks.

Index Terms: speaker verification, anti-spoofing, countermea-
sures, i-vector

1. Introduction

Automatic speaker verification systems, just like other biomet-
ric systems, are prone to spoofing. However, as compared to
other branches of biometrics like face recognition or finger print
recognition, spoofing of speaker recognition/verification is yet
to be thoroughly addressed. Some of the previous works [1, 2]
include developing anti-spoofing measures that require prior
knowledge of the spoofing attacks to be targeted at the ASV
system. However, generalized countermeasures, that have no
knowledge of the nature of attack are much more relevant in a
practical scenario. In this paper, we focus on such generalized
countermeasures.

With the aim of facilitating study of generalized spoofing
countermeasures, ASVspoof 2015 challenge was designed [3].
It provides a platform to compare and evaluate different anti-
spoofing techniques against a set of standard database and eval-
uation metrics. This study is based on the training and develop-
ment subset of the standard dataset released by the organizers
of this challenge.

Present state-of-the-art ASV system is based on an i-vector
[4] representation of speech utterance modelled by a Probabilis-
tic Linear Discriminant Analysis (PLDA) back-end [5, 6]. Ani-
vector contains both speaker and channel information, but chan-
nel component is suppressed by compensation techniques like
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Linear Discriminant Analysis (LDA), Within-Class Covariance
Normalization (WCCN) [7] or length normalization [8]. Thus,
at the scoring stage, there is little channel component left. All
this makes an i-vector a very attractive feature to be used in
an anti-spoofing system. It is assumed that an i-vector would
be able to model natural speech characteristics in a much bet-
ter way and hence, would be less prone to attacks by synthetic
speech generating algorithms. In this study, we develop an
i-vector based anti-spoofing classifier to discriminate between
human and synthetic speech. It may be noted here that in [9],
authors have introduced the use of i-vectors in a generalized
countermeasure scenario, but they have integrated it with the
ASV system. Our approach here, is to design an anti-spoofing
system independently of an i-vector-PLDA ASV system. The
designed system can later be added to an ASV system through
score fusion.

Though, synthetic speech increases the false alarms of an
ASV system, several studies have shown that comparitively
humans are much better in differentiating synthetic and gen-
uine speech [10, 11, 12]. One of the reasons behind this is
that phase spectrum, which plays an important role in human
speech perception [13, 14], is generally not taken into account
in most of the speech conversion/synthesis algorithms. All this
motivated us to consider features that contain phase informa-
tion. In [15], authors have demonstrated the usefulness of phase
based features in speech recognition. They compute group de-
lay functions from the speech signals and then convert them
to cepstral coefficients. We study i-vector extraction based on
Mel-Frequency Cepstral Coefficients (MFCCs) and group delay
based features and compare their effect on an anti-spoofing sys-
tem. Based on our analysis, we offer new directions at address-
ing a challenging problem which has received limited attention
in the speaker recognition community.

The remainder of this paper is organized as follows: Section
2 explains the standard corpus and evaluation metrics, Section 3
describes the anti-spoofing system, Section 4 details the exper-
iments conducted and analyses the results, Section 5 concludes
the paper and discusses future work.

2. Corpus and Protocols

In this study, we work on the standard Spoofing and Anti-
Spoofing (SAS) corpus . The corpus was divided into three
subsets by the organizers of ASVspoof 2015 challenge [3]. The
labels of evaluation subset are not yet released, so we base our
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study on the training and development subset. Both training
and development subsets contain human and synthetic speech
from male and female speakers. There is no overlap between
the speakers in these two subsets. The synthetic speech is gener-
ated from the following voice conversion and speech synthesis
algorithms:

* S1: A simplified frame selection based voice conversion
algorithm [16]

e S2: A voice conversion technique that changes only the
first coefficient of Mel-Cepstral coefficients.

e S3: Speaker adapted speech synthesis based on HMM
(17]

¢ S4: Same synthesis system as in S3, but using more data
for speaker adaptation.

¢ S5: Voice conversion algorithm based on a joint Gaus-
sian mixture model with maximum likelihood parameter
estimation taking global variance into account. [18]

All the files are 16 kHz, mono channel with most of them
around 5 seconds long. Training dataset has human and syn-
thetic speech from 25 speakers (10 male and 15 female), while
the development dataset has human and synthetic speech from
35 speakers (15 male and 20 female). Both the datasets com-
prise of a list of trials consisting of spoofed and genuine speech
audio files. Corresponding to each trial, a score has to be as-
signed determining whether it’s a genuine or spoofed speech.
Going on similar lines as NIST Speaker Recognition Evalua-
tions (SREs), these scores are then used to compute Equal Er-
ror Rate (EER). Genuine speech belongs to target trials, while
spoofed speech belongs to non-target trials. Training dataset
has 3750 genuine speech audio files (trials) and 12625 spoofed
speech audio files/trials. Similarly, development dataset has
3497 genuine speech audio files and 49875 spoofed speech au-
dio files.

3. System Description

3.1. I-vector extraction

An i-vector allows a fixed low dimensional representation of an
utterance while preserving the utterance-specific information.
Let M be a speech-category specific (i.e. genuine or spoofed
speech) GMM mean supervector, m be the speech-category in-
dependent supervector, and 1" be a low rank total variability
matrix. Then, the speech-category specific GMM mean super-
vector M can be expressed as a linear combination of m, and
the columns of 71" as,

M=m+Tw. €8

In (1), w is a random vector with standard normal distribu-
tion, and the columns of 7" are weighted by its elements. The
total variability matrix T' is learned by using large amounts of
labeled training data. The i-vector of an utterance can also be
viewed as the corresponding coordinates in the total variability
space (whose basis are given by the columns of 7"), and are ex-
tracted as the maximum a posteriori (MAP) point estimates of
w, using the utterance [4].

3.2. PLDA based scoring

Currently, state-of-the-art speaker recognition systems employ
one of the many variants of PLDA based scoring techniques.

Using the i-vectors extracted from a collection of labeled-
training data, a PLDA model computes the within-class and
across-class variabilities using an Expectation Maximization
(EM) algorithm. In this study, we used a Gaussian PLDA (G-
PLDA) of the form described in [8]. The G-PLDA model pa-
rameters {m, ®, X} are estimated using EM algorithm on the
labeled training data. Given a test utterance, we compute scores
corresponding to genuine and spoofed speech, and decide in
favor of the category with a higher score. Let 1, ¢: be the
enrollment and test i-vectors respectively. To calculate the log-
likelihood score between these two i-vectors, we use the follow-
ing equation:

S(weawt) :logpp(wtv'l/]eW) (2)

(12]0)p(1pe|0)
where,
(¢, e |0) is the probability that i-vectors 1., ¥ are com-
ing from the same class, whereas p(1|0)p(1)c|0) is the proba-
bility that i-vectors ., 1; are from different classes.

3.3. Gaussian scoring (GS)

In our experiments, we observed that PLDA approach did not
work well in spoofing detection under mismatched conditions
[19]. So, we further investigated a Generative Gaussian Classi-
fier in our work. GS is a classical classification technique which
is more commonly used in language identification (LID).

To use GS in our spoofing detection system, i-vectors of
each speech type (genuine and spoofed) are modeled by a Gaus-
sian distribution. A full covariance matrix is shared across both
the classes of speech. For each i-Vector x corresponding to a test
utterance, we evaluated the log-likelihood for each category as:

log P(x]Y;) = pi 7 'x — %M?Efl,ui — %XT271X+ c
3)
Where u; is the mean vector for speech type Y;, X is the
common covariance matrix, ¢ is a constant related to training
data and the prior distribution of test data (we assume this is
unknown in the challenge, set P(Ygenuine = P(Yspoof) =
0.5)).

3.4. Gaussian scoring with LDA (GS + LDA)

This back-end is same as Gaussian scoring except that it also
has a layer of LDA before it.

3.5. Gaussian cosine distance scoring (GCDS)

The classical cosine distance scoring (CDS) for i-vector based
system is given by the following equation:

(ATw1 )T (ATMQ)
V(ATw)T (ATwy)/(ATw2)T (ATws)

where A is a projection matrix, which may come from
within class covariance normalization (WCCN) or linear dis-
criminative analysis (LDA) projection, and w denotes the i-
vector of corresponding speech utterance. The operations are
generally performed in a cascade fashion: where the i-vector
is first projected through WCCN matrix and then LDA trans-
formation is applied, both of which are estimated from a back-
ground data set. We note that performance of classical LDA-
WCCN-CDS methods highly depend on the WCCN projection,
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which is usually difficult to estimate (especially in noisy and/or
channel mismatch conditions). Therefore, WCCN with back-
ground data based Gaussianization, called Gaussianized CDS
(GCDS) is used in this work. The algorithm is outlined below
[20]:

« Average the i-vectors of the 5 enrollment speaker;

¢ Calculate the mean and variance of the background data,
which are used to Gaussianize the i-vectors from above
step;

* Apply length normalization on all the data [8];

* Apply LDA on all the data to reduce the dimensionality;

* Repeat Step 3;

» Perform cosine distance scoring;

¢ Score normalization (calculate the mean and variance of
scores involved in the i th test file, which are then Gaus-
sianized by the derived mean and variance).

3.6. Modified group delay based features

Let z(n) be a given speech signal, then its short time fourier
transform (STFT) is:

X(w) = X (@)™

5)
where | X (w)] is short-time magnitude and ¢(w) is short-time
phase of the speech signal. Group delay is defined as the nega-
tive derivative of phase with respect to w :

(W) = Xr(W)Yr(w) + Yi(w)Xi(w)
X (w)[?

where, Y (w) is the STFT of nz(n), Xr(w), Yr(w) are real
parts of X (w), Y (w) while X7 (w), Y7(w) are their imaginary
parts.

To reduce the spiky nature of group delay function, the
power spectrum (| X (w)|?) is smoothed and two new parame-
ters, namely, o and y are added. The modified group delay
function is now defined as:

(6)

_ Xr(W)Yr(w) + Yi(w) X (w)
™ (W) = S ™

where, S(w) is the smoothed version of X (w).
Further,

_ T’Y ((U) @
Tav’Y(w) - |Tﬁ(w) |T’Y(w)‘ (8)
where, T4, (w) is the final modified group delay function.
Its value can be adjusted for any given environment by varying
the parameters « and ~y. For the experiments done in this study,
a=04andy=1.2.

After computing the modified group delay function, it is
converted to cepstra using Discrete Cosine Transform (DCT).
We consider only first 12 coefficients, after dropping the Oth
coefficient.

4. Experiments

The entire training subset was first used to train a Universal
Background Model (UBM) whose mean supervector is repre-
sented by M in equation 1. We then train a 7" matrix using
the same data. Next, i-vectors corresponding to each trial, are

extracted from the UBM and T matrix. Further, mean of all
the human speech as well as synthetic speech training i-vectors
are computed. These two mean i-vectors represent our target
(human speech) and non-target (synthetic speech) classes.

Now, development set i-vectors are computed the same way
from 7" matrix and UBM. They are scored against the mean hu-
man speech i-vector and mean synthetic speech i-vector. Scor-
ing is done based on different back-ends as explained in pre-
vious section. All these back-ends are trained using training
set i-vectors having two classes, namely, human and synthetic
speech. Scores obtained against mean human speech i-vector
correspond to target scores, while those against synthetic speech
i-vector correspond to non-target scores. These target and non-
target scores are then employed to compute EER of the system.
Table 1, report the results obtained for two systems, one us-
ing MFCCs while the other using modified group delay (MGD)
based features.

Table 1: Results for MFCC and MGD features.

Back-ends MFCC MGD
EER% | Accuracy% | EER% | Accuracy%
GS 15.58 83.73 17.96 82.10
GS +LDA | 27.46 72.51 29.20 70.77
GCDS 36.09 63.91 19.39 80.61
PLDA 36.06 63.91 19.39 80.61

It can be observed from the table, that MGD features
give comparable performance as MFCC features. MFCC
gives 15.58% EER with Gaussian back-end, while MGD gives
17.96%. Also, MGD performs much better than MFCC with
PLDA back-end. If we look at the confusion matrix plotted
in fig 2, we can easily observe that MGD features are much
better in detecting synthetic speech. In contrast, MFCC fea-
tures are better in detecting genuine speech. Y-axis in figure
corresponds to percentage of trials detected as spoofed/genuine
speech. MFCC was able to detect only around 60% of spoofed
speech, while MGD was able to detect more than 80% of
spoofed speech. Thus, both have complementary information,
that motivated us to further fuse the two systems.
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Figure 2: Plot of accuracies of MFCC and MGD features in
detecting genuine and spoofed speech

Fusion: Score level fusion of MFCC and MGD based sys-
tems is done. Out of total 35 speakers in development dataset,
17 (7 male and 10 female) are taken out and used to form a train
set for fusion. Logistic regression is used to learn combination
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Figure 1: Flow diagram of the proposed anti-spoofing system.

weights from these train set scores. These weights are then used
to fuse individual MFCC and MGD based system scores. From
table 1, the best EER of our anti-spoofing system is 15.58% ob-
tained using an MFCC based system. After fusion, we got a
7.03% absolute improvement in this EER bringing it down to
8.55%. It can be noted that in fig 3, Detection Error Trade-off
(DET) curves for MFCC and MGD systems are straight lines.
This happened as there was not much fluctuation in the scores
we got for these systems.
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Figure 3: Fusion of MFCC and MGD based systems

5. Conclusion

In this paper, we considered a systematic study on a gener-
alized countermeasure/anti-spoofing system. The system was
based on an i-vector framework and experiments were reported
on a standard dataset following standard protocols . It was ob-
served that features based on the phase spectrum of speech sig-
nal are better in detecting synthetic speech. This happens as
voice conversion or speech synthesis algorithms used to gen-
erate synthetic speech usually do not contain natural/original
phase information. When these phase based features were fused
with MFCC features, a relative improvement of +45.12% was
observed in the system EER, demonstrating the highly com-
plimentary nature of the two features. In future, work would
be focussed on seamlessly integrating this i-vector based anti-
spoofing system with general state-of-the-art i-vector based
ASV system.
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