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ABSTRACT
Effective front-end processing, which often involves feature extrac-
tion and speech activity detection (SAD), is essential for robustness
in speech systems. In this study, we propose an unsupervised SAD
scheme based on four different speech voicing measures which are
combined with a perceptual spectral flux feature. Effectiveness of
the proposed scheme is evaluated and compared against several
commonly adopted unsupervised SAD methods under actual harsh
acoustic conditions. As an example application, we also evaluate
performance of the proposed SAD in the context of an i-vector
based speaker identification (SID) system, where the recently intro-
duced mean Hilbert envelope coefficients (MHEC) are benchmarked
against conventional MFCCs. Long and spontaneous conversational
audio recordings from DARPA program RATS (Phase-I) are used
in our evaluations. Experimental results indicate that the proposed
SAD solution is highly effective and provides superior performance
compared to other unsupervised SAD techniques considered. In ad-
dition, it is shown that MHECs are effective alternatives to MFCCs
for SID tasks under severe degraded channel conditions.

Index Terms— Mean Hilbert Envelope Coefficients (MHEC),
speaker identification (SID), spectral flux, speech activity detection
(SAD), voicing measures

1. INTRODUCTION

Effective front-end processing, in which the raw acoustic waveform
is converted into a more useful and compact representation called
feature vectors, is a necessary first step for robust speech applica-
tions. Specifically, speech activity detection (SAD) and feature ex-
traction are two primary components of almost all front-ends. SAD
has applications in a variety of contexts such as speech coding [1],
automatic speech recognition (ASR) [2, 3, 4], speaker and language
identification [5, 6, 7, 8], and speech enhancement [9]. In addition,
for surveillance and monitoring applications that involve listening to
long conversational audio recordings with small a priori speech pres-
ence probability, SAD can help mitigate the excessive cognitive load
on human listeners by removing long and often noisy non-speech
intervals. This can in turn increase the efficiency of listeners and
reduce overall listener fatigue. In this study, our goal is to develop
a robust and unsupervised framework for speech detection in data
recoded over extremely degraded communication channels [10].

State-of-the-art SAD techniques include both supervised and un-
supervised approaches. Supervised methods, which are often based
on either Gaussian mixture models (GMM) [7, 11], hidden Markov
models (HMM) [3, 4], or multi-layer perceptrons (MLP) [5], work
well given that pre-trained models for both speech and non-speech
classes broadly match the acoustic characteristics of the test environ-
ment. Hence, they are limited to applications where a large amount

of training data is available and the acoustic properties of the test
environment are consistent and known a priori as well.

On the other hand, unsupervised SAD techniques assume no a
priori knowledge about the acoustic characteristics of the test envi-
ronment, and can be categorized as feature-based [1, 12, 13], or sta-
tistical model-based [14, 15, 16, 17]. Feature-based methods perform
well under stationary noise conditions at relatively high signal-to-
noise ratio (SNR) levels, however their performance degrades rapidly
as the noise level increases. Statistical model-based techniques em-
ploy a likelihood ratio test (LRT) of speech presence and absence
hypotheses in the short-time Fourier transform (STFT) domain, as-
suming that an estimate of the noise power spectrum is available. The
LRT based techniques are generally robust and effective, however
their performance is dependent on the accuracy of the noise spectrum
estimate, which is assumed to be uncorrelated and additive, making
them vulnerable to the presence of non-stationary and rapid chang-
ing noise. Moreover, there is no meaningful measure from speech
production physiology in the algorithm as it works entirely based on
the criteria derived from statistics. A remedy to this vulnerability
issue was proposed in [17], where the harmonicity information was
integrated into the LRT framework which led to significant gains in
SAD performance, particularly at extremely low SNR conditions.

In this study, we propose a robust and unsupervised SAD system
solely based on features that convey fundamental traits of speech,
which are governed by the speech production process. In particu-
lar, four different voicing measures as well as a perceptual spectral
flux (SF) feature are linearly combined through the principal com-
ponent analysis (PCA) to form a 1-dimensional soft-decision vec-
tor. For hard-decision making, a 2-mixture GMM is fit on the soft-
decision vector, which exhibits a bimodal distribution, and a thresh-
old is estimated based on the weighted average of the GMM means.
The effectiveness of the proposed technique is evaluated under ac-
tual noisy channel conditions using dry-run (part-1) speech material
from Phase-I of the DARPA program Robust Automatic Transcrip-
tion of Speech (RATS) [10, 18] (distributed by the Linguistic Data
Consortium - LDC). Performance of the proposed SAD method is
benchmarked against that of commonly adopted feature-based (e.g.,
ITU G729 Annex B [1]) and statistical model-based (e.g., single and
multiple observation LRT [14, 15, 17]) approaches. In addition, as an
example application, we also evaluate performance of the proposed
SAD in the context of an i-vector based speaker identification (SID)
system [19], where the recently introduced mean Hilbert envelope
coefficients (MHEC) [20, 21] are benchmarked against conventional
MFCCs using extremely degraded speech recordings from Phase-I
of the RATS program for the SID task. Developing robust alterna-
tive features for SID tasks has recently attracted significant research
effort (e.g., see [22, 23, 24, 25]), it is therefore useful to explore the
effectiveness of the MHEC versus baseline MFCCs for SID over ex-
tremely degraded channels.

7214978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



2. UNSUPERVISED SAD ALGORITHM

In this section, we describe the procedure for extraction of a 1-
dimensional feature vector that is used in our system as soft-decision
for the speech/non-speech discrimination task. This “combo” fea-
ture is efficiently obtained from a linear combination of four different
voicing measures as well as a perceptual spectral flux feature. The
voicing measures include harmonicity, clarity, prediction gain, and
periodicity. The perceptual spectral flux and periodicity are extracted
in the frequency domain, while the harmonicty, clarity, and predic-
tion gain are all time domain features. For feature extraction, the
audio signal is blocked into 32 ms frames with a 10 ms skip rate.
In order to extract the periodicity, harmonicity, and clarity, an ap-
proximate knowledge of the plausible pitch range in human speech
is required. Here, we choose a pitch period duration within the in-
terval of [2, 16] ms (or equivalently [62.5, 500] Hz in the frequency
domain), where the lower limit is imposed by the analysis frame
length, and the fact that each frame should at least cover two pitch
periods for a reliable voicing estimate.

2.1. Time Domain Features

All time domain voicing measures in this section, directly or indi-
rectly, use the normalized autocorrelation proposed in [26] for noise
robust pitch estimation. The deterministic autocorrelation of a short-
time windowed segment x(n) is computed as,

rxx(t, k) =

∑N−1
j=0 x(j)x(j + k)w(j)w(j + k)∑N−1

j=0 w(j)w(j + k)
, (1)

where w(j) is a Hanning window, and t and k are frame and auto-
correlation lag indices, respectively. It has been shown that normal-
ization by autocorrelation of the window function in (1) effectively
mitigates the impact of strong formants on the maximum autocor-
relation peak in the pitch range, and obviates the need for low-pass
filtering and/or center-clipping [27]. In addition, it also compensates
for the windowing effect which tapers the autocorrelation function
towards zero for larger lags.

2.1.1. Harmonicity

Harmonicity (a.k.a. harmonics-to-noise ratio) is defined as the rel-
ative height of the maximum autocorrelation peak in the plausible
pitch range. Mathematically, it can be expressed as,

h(t) =
rxx(t, kmax)

rxx(t, 0)− rxx(t, kmax)
,

kmax = argmax
2 ms ≤k≤ 16 ms

rxx(t, k). (2)

Note that the autocorrelation of a periodic signal is also periodic with
the same period, and its maximum takes on values close to the auto-
correlation at zero lag. Accordingly, for voiced segments which have
periodic structure, the harmonicity shows sharp peaks.

2.1.2. Clarity

We define clarity as the relative depth of the minimum average
magnitude difference function (AMDF) valley in the plausible pitch
range. Computing the AMDF from its exact definition is costly;
however, it has been shown that the AMDF can be derived (analyti-
cally) from the autocorrelation as [27],

D(t, k) ≈ β(k) ·
√

2
[
rxx(t, 0)− rxx(t, k)

]
, (3)
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Fig. 1. Individual features as well as their combination for a sam-
ple waveform with an average segmental SNR of 2.59 dB. (a) noisy
speech signal, (b) the combo feature along with the decision thresh-
old (dashed), (c) the perceptual SF, (d) the periodicity, (e) the clarity,
(f) the prediction gain, and (g) the harmonicity.

where β(k) is a scale factor that can vary between 0.6 and 1.0. We
have found that the clarity feature is not very sensitive with respect
to the value of this parameter; therefore, we set β(k) to 0.8 in our
experiments. The clarity is then extracted as,

c(t) = 1− D(t, kmin)

D(t, kmax)
,

kmin = argmin
2 ms ≤k≤ 16 ms

D(t, k). (4)

Subtracting the term from 1 in (4) simply converts the minima to
maxima which are more desirable for our application. In this manner,
the clarity exhibits large values for voiced and speech-like segments,
while maintaining a minimum for background sounds.

2.1.3. Prediction gain

The prediction gain is defined as the ratio of the signal energy to the
linear prediction (LP) residual signal energy. The signal energy can
be obtained from the autocorrelation at zero lag. In order to calculate
the LP residual signal energy, however, the Levinson-Durbin recur-
sion [27] is applied and the error from the last step yields the energy
of the residual signal. The prediction gain is then computed as,

Gp(t) = log

(
rxx(t, 0)

εp

)
, (5)

where εp is the error in the last step of the recursion, and p is the order
of LP analysis which is set to 10 in this study (assuming a sampling
rate of 8 kHz). In short-time frames, there is a high correlation among
speech samples, making it easier to predict, or in other words the de-
nominator in (5) becomes smaller. Therefore, the average predication
gain reaches its highest value for voiced and speech-like frames.

2.2. Frequency Domain Features

Both features from this section are extracted in the STFT domain
which is formed by taking a 2048-point DFT from Hamming win-
dowed frames after zero padding. Magnitude information is only
used and the phase response is discarded.
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Fig. 2. Distribution of the combo feature values for a sample wave-
form.

2.2.1. Periodicity

In the STFT domain, the harmonics of the pitch frequency are appar-
ent in the magnitude spectrum of speech during voiced and speech-
like segments. This observation serves as the basis for the harmonic
product spectrum (HPS) technique [27] which has been widely ap-
plied for pitch detection in noisy environments. The HPS in the
log-spectral domain is defined as, P (t, ω) =

∑R
l=1 log

∣∣X(t, lω)
∣∣,

where R is the number of frequency-compressed copies of the orig-
inal spectrum, which is fixed to 8 in this study. The frequency-
compressed copies coincide at the fundamental frequency and rein-
force the amplitude, while other harmonics are cancelled or attenu-
ated in the final product. The periodicity is computed as the maxi-
mum peak of (6) in the plausible pitch range,

Phps(t) = P (t, ωmax),

ωmax = argmax
62.5 Hz ≤ω≤ 500 Hz

P (t, ω). (6)

The periodicity is especially impervious to noise and other back-
ground sounds, since their spectral harmonics cannot combine co-
herently in the HPS. The periodicity can thus be used to effectively
discriminate speech from non-speech sounds.

2.2.2. Perceptual spectral flux

Over short-time frames, speech is a quasi-stationary and slowly vary-
ing signal, meaning that its spectrum does not change rapidly from
one frame to another. Hence, one can effectively exploit this qual-
ity to develop a feature capable of discriminating speech from other
more rapidly varying sounds. An example of such a feature is the SF
[28], which measures the degree of variation in the spectrum across
time. Given the benefits of incorporating perceptual models into
speech processing frameworks (e.g., MFCC), in this study we de-
fine the perceptual SF as, SFp(t) =

∣∣∣∣Xm(t, ω)−Xm(t− 1, ω)
∣∣∣∣

1
,

where || · ||1 denotes the L1-norm, and Xm(t, ω) is the energy nor-
malized mel-spectrum at frame t which is calculated using an 80-
channel mel-filterbank spanning the frequency range from 0 to the
Nyquist frequency. The perceptual SF exhibits relatively deep val-
leys for speech segments, while maintaining a maximum value for
background sounds/silence. Accordingly, we employ the negative of
this parameter as a feature for speech/non-speech discrimination.

After extracting the above noted features, a 5-dimensional vector
is formed by concatenating the voicing measures along with the per-
ceptual SF. Each feature dimension fi is then normalized according
to, f ′i = fi−µi

σi
, where the mean µi and standard deviation σi are

computed over the entire waveform. The normalized 5-dimensional

feature vectors are linearly mapped into a 1-dimensional feature
space represented by the most significant eigenvector of the fea-
ture covariance matrix. This is realized through PCA and retaining
the dimension that corresponds to the largest eigenvalue. The 1-
dimensional “combo” feature is smoothed via a 3-point median filter
to serve as soft-decisions for the SAD task. Fig. 1 shows sample time
domain plots of individual features as well as their combination for
part of a noisy speech waveform with an average segmental SNR of
2.59 dB. It is seen that, although the individual features might not be
as discriminative for the SAD task, their combination exhibits a great
potential for noise robust speech/non-speech detection. Distribution
of the combo feature values for a 366-second noisy speech signal is
depicted in Fig. 2 (note that this is an example for illustration; the dis-
tribution of the combo feature can vary across different waveforms
based on the distortion level and also the proportion of speech versus
non-speech frames, although it still remains bimodal). It is evident
that the combo feature has a bimodal distribution in which speech
and non-speech classes are well separated. We exploit this property
for hard-decision making by fitting a 2-mixture GMM to the feature
and estimating a detection threshold (Th) from a weighted average
of the mixture means as, Th = αµsp + (1 − α)µsil, where µsp
and µsil are the speech and non-speech mixture means, respectively.
The weight parameter α can be tuned to achieve the desired false
accept/reject rate (Pfa and Pmiss).

3. EXPERIMENTS AND RESULTS

3.1. Speech Activity Detection

The proposed unsupervised SAD system is evaluated using speech
material from the RATS Phase-I dry-run data (only part-1) [10].
RATS dry-run data consists of a total of 111 conversational tele-
phone speech (CTS) waveforms that were retransmitted (through
LDC’s Multi Radio-Link Channel Collection System) and recorded
over 8 extremely degraded communication channels, labeled A–H,
with distinct noise characteristics (the distortion type is nonlinear
and the noise is to some extent correlated with speech). Each CTS
file is 900 seconds long with sparse speech activity. As previously
noted in Section I, our goal here is to develop a robust unsupervised
SAD system for long audio recordings with small a priori speech
presence probability, in order to assist human listeners avoid au-
diting long noisy non-speech intervals. This justifies our choice of
the aforementioned dataset for evaluations. However, as we shall
see in the next section, our system has the potential to be adapted
for automatic speech applications such as speaker and language
identification, with no or minimal modifications.

Given that majority of the features described in Section II can
primarily detect voicing, the proposed SAD may perform poorly in
detecting short unvoiced frames surrounding a voiced segment. To
alleviate this issue, similar to [7] and [12], the boundaries of each
detected speech segment are extended by 0.1 s (i.e., 10 frames). The
same post-processing is applied for other techniques used in our eval-
uations.

Fig. 3 shows receiver operating characteristic (ROC) curves ob-
tained from evaluating the proposed unsupervised SAD scheme as
well as five commonly adopted SAD solutions, namely ITU G729B
[1], single-observation LRT (SOLRT) [14], SOLRT paired with an
HMM-based hangover smoothing scheme [14], multiple-observation
LRT (MOLRT) [15], and a recently introduced modification to
MOLRT that incorporates harmonicity information into the LRT
framework [17] (for individual voicing feature performances see
[29]). It is evident from the ROC curves that our unsupervised sys-
tem performs well on extremely degraded data from RATS dry-run
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Fig. 3. Comparison of ROC curves for the proposed SAD method
versus other feature-based and LRT-based techniques considered in
the evaluations using RATS dry-run (part-1) data for Phase-I.

(part-1), which points to its robustness against nonlinear channel
distortions. The basic assumption in formulating different flavors of
statistical LRT based SAD is that the noise is additive and uncorre-
lated, however, it should be noted that the type of distortion seen in
RATS data is nonlinear (i.e., noise is correlated with speech and not
additive). This is a major reason for the poor performance of this
class of SAD methods on RATS data.

3.2. Speaker Identification
As an example application, we evaluate the proposed unsupervised
SAD in the context of an i-vector based SID system. A total of
18366 speech recordings, including clean source files along with
their degraded (retransmitted) versions (A through H), from material
distributed within the RATS program for the SID task (LDC2012E40
and LDC2012E49 [18]) are partitioned into development, enroll-
ment, and test sets. The development set contains 11634 audio
files from 641 speakers with a minimum of 8 sessions/channels
per speaker. For enrollment, we predefine 6 source files for each
speaker, thus providing 6×8 retransmitted segments that we could
choose from. Accordingly, four different test conditions can be iden-
tified as: (i) matched, (ii) mismatched, (iii) seen, and (iv) unseen.
Speaker models for matched and mismatched conditions are chosen
from the same retransmission channel (e.g., speaker “1A” would
come from the 6 source files retransmitted over channel A). A test is
categorized as matched if it comes from the same channel on which
the speaker model is enrolled (in our example a test segment from
channel A is a matched test because the channels match). On the
other hand, a test is labeled as mismatched if it comes from a channel
other than the one used in enrollment (in our example any test seg-
ment from channels B–H). Speaker models for the seen and unseen
conditions are enrolled using numerous channels selected randomly
for each of the 6 enrollment segments. A test is labeled as seen trial
if the model against which it is scored has observed the test channel
during enrollment. If the speaker model has not observed the test
channel during enrollment, the associated trial is part of the unseen
trials. The total number of trials for each of the 4 test conditions
are: matched (26,428), mismatched (177,197), seen (554,988), and
unseen (195,448).

We consider two acoustic features in our SID experiments; 12-
dimensional MFCC (HTK [30]) and MHEC [20, 21] feature vectors
are extracted using 32-channel mel and Gammatone filterbanks span-
ning the telephone bandwidth (i.e., 300–3400 Hz), respectively. For
both acoustic features, frame log-energies are appended and the first
and second temporal cepstral derivatives are computed to from 39-

dimensional vectors, and finally cepstral mean and variance normal-
ization (CMVN) is applied. In order to perform non-speech frame
dropping, we use (i) time labels generated by LDC on clean source
data (before retransmission) and re-aligned to the retransmitted ver-
sions, and (ii) time labels obtained using the proposed unsupervised
SAD on clean as well as retransmitted waveforms. In this experi-
ment, the SAD threshold parameter, α, is set to 0.55.

A 1024-mixture gender independent UBM is constructed per
feature-SAD combination (4 in total) and used to generate zeroth
and first order Baum-Welch statistics for training the i-vector extrac-
tor [19]. We extract 400-dimensional i-vectors for each file and use
the average for 6-sided enrollment. The dimension of i-vectors is
then reduced to 250 using LDA, and Gaussian PLDA models [31, 32]
with 250 columns in the Eigenvoice matrix are trained on the devel-
opment data to score the trials. Results of the SID experiments using
LDC and the proposed SAD labels are given in Tables 1 and 2, re-
spectively, in terms of EER and Pfa at Pmiss = 10% (FA10m, which is
the RATS program target). In summary, the SID performance is con-
sistently superior with time labels produced by the proposed SAD
which further confirms its effectiveness for speech detection over ex-
tremely degraded audio recordings. In addition, irrespective of the
time label source, the MHEC based subsystems outperform the sys-
tems trained with MFCCs on all 4 test conditions considered. Fur-
thermore, a simple additive fusion of the MHEC and MFCC based
subsystems provides consistent gain in performance. This indicates
that the two acoustic features are complimentary for the SID task.

Table 1. Performance of the MFCC and MHEC based subsystems as
well as their fusion with LDC speech/non-speech labels.

Condition
EER (%) FA10m (%)

MFCC MHEC Fusion MFCC MHEC Fusion

seen 5.45 4.84 4.79 2.58 2.12 2.00

unseen 6.08 5.76 5.48 3.42 2.76 2.64

matched 4.05 3.74 3.72 1.69 1.34 1.34

mismatched 6.66 6.27 6.00 4.33 3.66 3.41

Table 2. Performance of the MFCC and MHEC subsystems and their
fusion with speech/non-speech labels from the proposed SAD.

Condition
EER (%) FA10m (%)

MFCC MHEC Fusion MFCC MHEC Fusion

seen 4.46 4.27 3.97 1.66 1.35 1.37

unseen 5.05 4.86 4.56 1.99 1.80 1.63

matched 3.62 3.36 3.30 1.23 1.04 1.05

mismatched 5.67 5.37 5.11 3.02 2.61 2.36
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