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Abstract—In this study, we explore the use of deep learning
approaches for spoofing detection in speaker verification. Most
spoofing detection systems that have achieved recent success em-
ploy hand-craft features with specific spoofing prior knowledge,
which may limit the feasibility to unseen spoofing attacks. We aim
to investigate the genuine-spoofing discriminative ability from the
back-end stage, utilizing recent advancements in deep learning
research. In this work, alternative network architectures are
exploited to target spoofed speech. Based on this analysis, a
novel spoofing detection system which simultaneously employs
Convolutional Neural networks (CNNs) and Recurrent Neural
Networks (RNNs) is proposed. In this framework, CNN is treated
as a convolutional feature extractor applied on the speech input.
On top of the CNN processed output, recurrent networks are
employed to capture long-term dependencies across the time do-
main. Novel features including Teager Energy Operator Critical
Band Autocorrelation Envelope (TEO-CB-Auto-Env), Perceptual
Minimum Variance Distortionless Response (PMVDR) and a
more general spectrogram are also investigated as inputs to
our proposed deep learning frameworks. Experiments using the
ASVspoof 2015 Corpus show that the integrated CNN-RNN
framework achieves state-of-the-art single system performance.
The addition of score-level fusion further improves system
robustness. A detailed analysis shows that our proposed approach
can potentially compensate for the issue due to short duration
test utterances which is also an issue in the evaluation corpus.

Index Terms—Spoofing detection, convolutional neural net-
works, recurrent neural networks, TEO-CB-Auto-Env, PMVDR,
spectrogram.

I. INTRODUCTION

SPEAKER verification, serving as a popular and flexible
solution for biometric authentication, has drawn more

attention in recent years [1]. It also represents one of the core
scientific concentrations in the U.S. OSAC (Organization for
Scientific Area Committees)1. In a speaker verification system,
a decision whether to reject or accept a claimed identity is
made based on a speaker’s known utterance. Typical appli-
cations include log-in for smart devices, door access control,
online information access, telephone banking, etc. [2]. While
recent advancements in channel variability modeling, short
train/test duration, context mismatch and noise compensation
have greatly improved the reliability of speaker verification
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systems, studies have shown that speaker verification sys-
tems remain vulnerable to intentional spoofing attacks [2]–
[6]. Earlier studies have also highlighted the vulnerability
of GMM-UBM speaker recognition solutions to computer
altered speech [7]. In the context of voice biometrics, spoofing
refers to when an impostor attempts to masquerade as an
enrolled speaker by falsifying speech data traits. Previous
studies have shown that the false acceptance rate of state-
of-the-art speaker verification systems has been significantly
increased with replayed speech, impersonation, synthesized
speech, voice conversion and artificial signals as spoofing
attacks [2], [6], [8]–[14].

Countermeasures have been investigated since the vulnera-
bility caused by spoofing attacks have been identified by the
research community recently. The most common and effective
strategy is to build a stand-alone spoofing detection system
before the speaker verification system [2], [6]. As an emerg-
ing field in speaker verification, standard large-scale datasets
including protocols are still being developed for evaluation
of spoofing countermeasures [6], [15]. Most countermeasures
are developed using closed, specific spoofing datasets, where
prior knowledge about the specific spoofing type plays an
important role for detection [16], [17]. In the First Automatic
Speaker Verification Spoofing and Countermeasures Challenge
(ASVspoof 2015), which was held as a special session in
INTERSPEECH 2015, the challenge result confirms this ob-
servation. In the challenge, phase-based features or prosodic
features such as Relative Phase Shift (RPS), or modified
group delay (MGD) achieved good performance [6], [18], [19].
Careful analysis of the effectiveness of these features in de-
tecting spoofing reveals that, phase information is lost/changed
during the analysis-synthesis step in some speech-synthesis
techniques, which makes genuine speech different from that
which has been synthesized [16]. This represents the main
case in ASVspoof 2015: all 10 spoofed speech categories
in the challenge corpus are from Voice Conversion (VC)
or Speech Synthesis (SS) algorithms. However, such prior
knowledge is unrealistic in practice, thus these features are
not guaranteed to be effective to attacks which have unchanged
phase information [20]. A robust spoofing detection solution
is therefore required to generalize well for unknown attacks
from different spoofed types.

For this consideration, efforts have also been made to
explore features that do not depend on strong prior knowledge
for spoofing detection. In [21], the authors employ Local
Binary Patterns (LBPs), which is a particular case of texture
features adopted in many face verification or face spoofing
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detection [22], [23]. The main advantage of LBP feature is that
they capture the differences in the spectro-temporal texture of
genuine and spoofed speech, but relies on a genuine speech
model. By doing this, the LBP feature combined with a one-
class SVM is expected to generalize well to unseen attacks.
In our submission to ASVspoof 2015 [24], the Teager Energy
Operator Critical Band Autocorrelation Envelope (TEO-CB-
Auto-Env) and Perceptual Minimum Variance Distortionless
Response (PMVDR) features were investigated for this task.
Motivated by a non-linear speech production model, the TEO
based features were initially designed to capture variabilities
introduced to stressed speech. In the context of spoofing detec-
tion, TEO-CB-Auto-Env features are also expected to be able
to model the differences between genuine and spoofed speech
[25]. While for PMVDR [26], this feature can accurately
model the upper spectral envelope at perceptually important
harmonics. By incorporating this perceptual consideration,
PMVDR is expected to be suitable for detecting spoofed
speech. More generally, 40 dimensional filter-bank features
with a deep neural network (DNN) as a back-end classifier
was reported to be effective in spoofing detection [24]. This
is an interesting observation, indicating that the back-end
advancement for the speaker verification anti-spoofing task is
also a good direction to explore.

In addition to front-end feature investigation, different back-
end classifiers have also been examined in recent studies.
Gaussian Mixture model (GMM) or a simple Gaussian Clas-
sifier (GC) can achieve good performance with respect to
alternative features [19], [24], [27], [28]. Linear Discriminative
Analysis (LDA), Probabilistic Linear Discriminative Analysis
(PLDA) were both reported to be effective in certain conditions
[16], [24], [29]. One observation obtained from those systems
is that the back-end effectiveness depends on the front-end
features. For example, PLDA improves performance of a joint
spoofing detection and speaker verification system with Mel-
cepstral features and linear predictive coding based features
[29], but did not show much advancement in our TEO-
CB-Auto-Env or PMVDR based i-vector spoofing detectors
[24]. To consider the problem of generality in the context
of multiple, unknown spoofing attacks, one-class SVM was
investigated [18], [21]. By incorporating a one-class SVM,
it is expected to overcome the main drawback of multi-
class classification, which over-fits the known attacks and
loses the generalization to attacks that are not previously
observed. As mentioned above, DNN frameworks achieved
competitive results in the ASVspoof 2015 Challenge. For
spoofing detection, DNN can be utilized either as a back-end
classifier [18], [24] or a feature extractor [30].

In this study, we focus on developing a spoofing detector
solution from the back-end level. More specifically, we ex-
amine different deep learning frameworks (i.e., Deep neural
networks(DNNs), Convolutional Neural networks (CNNs) and
Recurrent Neural Networks (RNNs)) for spoofing detection
[31]–[34]. Based on that, a novel deep learning architecture
which integrates both CNN and RNN is proposed:

DNN: DNN are reported to be effective in different studies
[18], [24], [30]. In this work, we provide DNN results with a
range of features, for the purpose of system comparison.

TABLE I
EER(%) ON ASVSPOOF 2015 DEVELOPMENT DATA. THE PERFORMANCE
IS EVALUATED WITH TEO-CB-AUTO-ENV AND PMVDR, RESPECTIVELY.
THE RESULTS FROM TWO SYSTEMS CONFIRM THAT SAD DOES NOT HELP

ON SPOOFING DETECTION.

Spoofing type S1 S2 S3 S4 S5
TEO/SAD 0.52 3.16 0.37 0.40 1.28
TEO/NO SAD 0.34 2.42 0.25 0.18 1.07
PMVDR/SAD 0.37 2.43 0.29 0.18 0.87
PMVDR/NO SAD 0.28 2.23 0.09 0.12 0.98

CNN: Although the idea of employing CNN for spoofing
detection is not new, most studies focus on face spoofing
detection [35], [36]. In the context of speaker verification anti-
spoofing, to the best of our knowledge, no studies have been
reported that successfully apply CNN as a spoofing detector.
In this study, we intend to investigate CNNs for speaker
verification anti-spoofing.

RNN: RNN is also investigated. The intuition behind our
investigation with RNN is that RNN is able to capture the long-
term dependencies along a consecutive sequence (i.e., time
in speech application). In fact, as indicated in TABLE I, we
found that speech activity detection (SAD) does not improve
performance of our i-vector systems which were submitted to
the challenge. Based on this observation, we conclude that
speech alteration algorithms, such as voice conversion and
speech synthesis, have a consistent influence on the speech
utterance, even for the background noise which are always
discarded in speech recognition and speaker recognition. For
this reason, RNN is considered to be a proper model for
consistent “spoofing”.

CNN+RNN: To further explore the advancement of deep
learning frameworks for spoofing detection, we propose a
combined CNN+RNN architecture for this task. Here, CNN
plays the role of a feature extractor, and RNN is employed to
capture the consistent “spoofing” properties. Through back-
propagation, the feature extractor (CNNs) and final classifica-
tion network (RNNs) are optimized simultaneously.

In addition to TEO-CB-Auto-Env and PMVDR features
that we adopted in a previous work, we propose a modified
spectrogram, a more general feature without any design, as
input to our proposed deep frameworks. A detailed feature
description is presented in Section II. while the proposed deep
learning frameworks are introduced in Section III.

Although more detailed explanations and analysis can be
found throughout this paper, let us first summarize the novel
contributions and findings below:

1) The features that we propose do not rely on spoofing prior
knowledge, which is expected to generalize well to unknown
spoofing attacks that were not observed during the training
phase.

2) Our proposed systems do not require that we optimize
features and classifiers separately. Such an end-to-end ap-
proach may have several benefits. For example, modeling from
the utterance level reduces the overall system complexity (one
vs. number of frames evaluations per utterance). Moreover,
this approach often results in considerably simplified systems
requiring fewer concepts and heuristics.
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Fig. 1. TEO-CB-Auto-Env feature extraction. We use 18 Gabor filter banks, the bandwidth is partitioned with critical band, the 18th band correspond to 4
kHz. In this manner, 18 dimensional features is extracted from each frame.

3) As one of the earliest studies which employs CNNs
and its combination with RNNs for spoofing detection, we
demonstrate that deep learning methods, without expertise
for spoofing, could also achieve state-of-the-art anti-spoofing
performance.

The remainder of this paper is organized as follows. Sec-
tion II outlines the features used in this study; Section III
presents details of our spoofing detection models; Section IV
reports experimental setups, evaluations and results; Section
V discusses key observations stemming from the experiments.
Finally, we conclude in Section VI with a look ahead towards
future work.

II. FEATURES FOR SPOOFING DETECTION

In this section, the following features that are considered for
spoofing detection are presented: TEO-CB-Auto-Env, PMVDR
and spectrogram features. In addition, a feature preparation
method with cropping or padding to help unify different
duration lengths of utterances is investigated [37].

A. TEO-CB-Auto-Env

Fig. 1 shows a flow diagram of TEO-based feature ex-
traction [25]. The TEO profile obtained from the critical
band2 based Gabor bandpass filter output is initially segmented
on a short-term basis. Next, an auto-correlation is applied
after framing. Once the auto-correlation response is found,
the area under the auto-correlation envelope is obtained and
normalized. One area coefficient is obtained for each filter
band. It has been shown to be large for genuine speech and
low for spoofed speech, corresponding to large area coefficient
for neutral speech and small coefficient for stressed speech
in stress detection tasks [25], [38]. To show the difference,
we select one frame with the same time coordinate from one
genuine utterance and one spoofed utterance “S1” respectively,
and compute the TEO-profiles and corresponding feature co-
efficients. In order to have a fair comparison, we carefully
select utterances with the same context. As shown in Fig.2,
the differences can be found in TEO profiles and normalized
areas, which suggests that TEO-CB-Auto-Env is a sensitive
and effective candidate for spoofing detection tasks.

B. PMVDR

PMVDR features were first proposed by Yapanel and
Hansen [26]. PMVDR computes cepstral coefficients by in-
corporating perceptual warping of a FFT power spectrum,

2http://www.sfu.ca/sonic-studio/handbook/Appendix E.htmL
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Fig. 2. Plots of wavforms, TEO profiles and Normalized areas for genuine
and spoofed frames. For simplicity, we only display critical band 10. The
higher value for genuine speech highlights the more natural regularity than
that of spoofed speech

replacing the Mel-scaled filter bank with the minimum vari-
ance distortionless response (MVDR) spectral estimator. These
features have better spectral modeling ability of speech signals
compared to traditional feature extraction methods [26]. Previ-
ous studies have shown that perceptual knowledge can differ-
entiate between genuine and spoofed speech. Since PMVDR
incorporates perceptual warping of the spectrum, we used
PMVDR for this task. A schematic diagram of the PMVDR
front-end is shown in Fig. 3.

C. Spectrogram

As an image representation of the power spectrum, genera-
tion of a traditional spectrogram is straightforward. After ap-
plying Short-time Fourier transform (STFT) to pre-processed
frames (a 256 point Hanning Window with 0.5 skip rate), the
spectrogram is formulated with Equation (1):

Spectrogram(t, ω) = |STFT (t, ω)|2, (1)

For this study, an additional step is performed where we
convert the conventional spectrogram into a log scale with
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Fig. 3. Flow diagram of PMVDR feature extraction. Pre-processing includes
pre-emphasis, frame-blocking and Hamming windowing. For window size and
shift, we use the same configuration as TEO-CB-Auto-Env feature, which is
a 25 ms analysis window with 10 ms frame shift.

Equation (2), so the decibel (dB) scale is used instead of
amplitude.

Spectrogram(t, ω)|dB = 20 log10

(
|STFT (t, ω)|
2× 10−5

)
, (2)

D. Forced alignment for feature matrix

For the ASVspoof 2015 Corpus, the duration of each
utterance is not fixed, where the average length is typically
3.5s. Based on this observation, we create a unified 4s feature
matrix by incorporating either data padding or cropping.
Although it is not necessary to submit fixed-length inputs
into RNNs, we maintain this unified feature format unless
specified. In fact, a similar operation process could be found
in text-dependent speaker recognition as well [37]. Actually,
experimental analysis in Section V will show that this simple
solution to be presented has the benefit in addressing the issue
of short duration.
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Fig. 4. Illustration of padding and cropping. We concatenate repeat data for
the utterance which is less than 4s; we select 4s consecutive data for utterance
which is more than 4s. By this operation, we create a unified format for deep
learning frameworks.

III. DEEP LEARNING FRAMEWORKS

In this section, we outline the essentials of deep learning
frameworks for spoofing detection and highlight the architec-

 

 … 

... 

Normalized T-F 

Spectrogram 

Input [1×128×250] 

 

ConvLayer 

Feature maps 

[16×122×244] 

Pooling 

 

[16×62×123] 

 

FC 

 

[4608×1024] 

 

Genuine 

Spoofed 

ConvLayer 
Feature maps 

[32×14×28] 

... 

Pooling 
 

 [32×8×18] 
  

Fig. 5. Diagram of CNN architecture for spoofing detection. ConvLayer
stands for convolutional layer; we apply maxpooling for downsampling. The
output of CNNs (i.e., [32×8×18]) is vectorized and then submitted to a fully-
connected (FC) network.

ture of the proposed CNN+RNN solution in this study. All
models are implemented with with the toolkit: Theano [39].

A. Deep neural networks

DNNs for spoofing detection are kept in similar structures
with our previously proposed model [24]. We use 4 hidden
layers with 1024 hidden nodes per layer, where the final
softmax layer consists of two or six nodes (it depends on
how many labels of spoofed speech used for training the
spoofing detection networks), which represent the genuine
and spoofing class probability respectively. We also compare
different activation functions, Rectified Linear Units ReLU
performs best [40].

f(x) = max (0, x), (3)

where x is the input to a neuron. To address overfitting, a 50%
Dropout is applied to every hidden layer [41]. For features with
different dimensions, the only difference is the input layer.
For example, 18 dimensional TEO-CB-Auto-Env features are
derived for each frame. Subsequently, 11 consecutive frames
of TEO features (198 dimension in total) are vectorized as the
first layer input. Since there is no speech context information
involved in this classification task, only the “genuine” or
“spoofing” label is assigned for each input acoustic feature
set. Therefore, for the decoding part, an average score across
the whole utterance is computed as the final classification
probability.

B. Convolutional neural networks

Here, the classification task consists of determining whether
input speech utterances are genuine or spoofed. With padding
or cropping, we have created features (e.g., spectrogram) for
each utterance with a unified time-frequency (T-F) shape.
The classifier maps feature matrices to either genuine/spoofed
class probabilities using several convoluational/pooling layers
as feature extractors, followed by a fully connected network
with a softmax layer as the final classification layer. The
architecture is illustrated in Fig.5. Here, we use a normal-
ized T-F spectrogram with [1×128×250] dimensionality as
input to the CNNs. In this case, a height 128 represents the
number of frequency bins, width 250 is the length along time
axis. ConvLayer will compute the output of neurons that are
connected to local regions in the input. A ConLayer Ck×l

m→n
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computes m × n convolutions between m input frames and
n output frames, with convolution filters of size k × l. This
may result in a total volume of [16×122×244] if we decided
to use 16 filters, 7 × 7 convolutions. Pooling will perform a
downsampling operation along the spatial dimensions (width,
height), resulting in a smaller volume as [16×62×123]. The
FC (i.e. fully-connected) layer will compute the class scores,
resulting in a volume of size [1×1×2], which represents the
probabilities of both genuine and spoofed speech.

C. Recurrent neural networks

As the extension of the conventional feedforward neural
network, an RNN is designed to address a variable length input
sequence. This is particularly suitable for modeling speech.
By having a recurrent hidden state whose activation at each
time is dependent on that from the previous time, an RNN
could learn the long-term dependencies of the sequence. For
example, given a sequence x = (x1,x2, ...,xT ), the RNN
updates its recurrent hidden state ht by

ht =

{
0, t = 0

φ(ht−1,xt), otherwise
(4)

where φ is a nonlinear function. To prevent the problem of
gradient vanishing, a recently proposed gated recurrent unit
(GRU) activation function is employed in this study [42]. The
proposed RNN architecture is shown as Fig. 6. Although it is
not necessary to force align the feature dimensions, we simply
use our proposed padding or cropping method to keep the same
input size format as the CNN or CNN+RNN model.
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Fig. 6. Diagram of RNN architecture for spoofing detection. As shown in
the figure, we employ many-to-one recurrent model for the classification task.
The output of the recurrent layer is followed by a fully-connected hidden layer
and a final classification softmax layer, similar to that of CNNs.

D. Integration of CNNs and RNNs

As noted in Section I, the introduction of SAD to the
spoofing detection pipeline did not help to improve our i-vector
based systems previously submitted to ASVspoof 2015. This
observation suggests that “spoofing” may have a consistent
effect on genuine speech. Inspired by the fact that the CNN
plays a role for extracting genuine/spoofing discriminative
features, and that an RNN is capable of modeling the long-
term dependencies (in this study, “spoofing” is the factor which
we want to model with the RNN) across the long sequence
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Fig. 7. Diagram of CNN+RNN architecture for spoofing detection. From the
3D tensor, the 32× 8 snippet is vectorized to feed into RNN layers.

instead of short frames, we propose to employ CNNs and
RNNs simultaneously for spoofing detection.

In the CNN+RNN framework, the output of the CNN is a
set of channels (i.e., feature maps), as illustrated in Fig. 7. For
example, here the feature maps are formulated as a 3D tensor,
where 18 is the number of time steps mapped from the 250
time steps in the original spectrogram. This means 18 recurrent
layers should be constructed in the RNNs. Similar with other
frameworks, the RNN output is followed by a fully-connected
network with a softmax layer for final classification.

Exploiting recent advancements in deep learning research,
Batch Normalization is implemented for CNN and RNN model
[43]. This significantly reduces training time. Also, 50 %
Dropout is applied to the final fully-connected layer to address
overfitting.

IV. EXPERIMENTS

In this section, we first provide an overview of the corpus
used in our experiments, and present our initial results on
development data and evaluation data, respectively.

A. ASVspoof 2015 Corpus

ASVspoof 2015 provides a database which consists of both
genuine and spoofed speech, with the aim to boost research for
developing generalized countermeasures to spoofing attacks.
The spoofed speech is generated from the original genuine
speech with different speech synthesis (SS) and voice con-
version (VC) algorithms. For more details about spoofing
techniques, please see [6].

The whole dataset is partitioned into three subsets: training,
development and evaluation. The training set is provided to
train spoofing and genuine speech models. The development
set is used to test models constructed from training data, as
well as for score calibration when we want to fuse different
spoofing detection systems. Finally, spoofing detection perfor-
mance is measured on the evaluation set. In the corpus, 10
spoofing algorithms were used to generate spoofed utterances.
All three subsets contain spoofing types S1-S5, which are
denoted as known attacks; while S6-S10 only appear in the
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TABLE II
DEEP ARCHITECTURES PROPOSED FOR SPOOFING DETECTION. Conv, Pooling, filts WITH PARAMETERS [7× 7, 3× 3, 16] STANDS FOR A [7× 7] 2D

CONVOLUTION LAYER, A [3× 3] MAXPOOLING LAYER, WITH 16 FILTERS. 4 SUCH Conv, Pooling, filts LAYERS ARE INVESTIGATED AS
CONVOLUTIONAL FEATURE EXTRACTORS. FOR RNNS, A Recurrent LAYER IS SET TO HAVE 300 NODES. FC= FULLY CONNECTED LAYER. THE INPUT

OF THESE NETWORKS IS THE [1×128×250] SPECTROGRAM.

layer Conv, Pooling, filts Conv, Pooling, filts Conv, Pooling, filts Conv, Pooling, filts Recurrent FC output
CNNs 7×7, 3×3, 16 5×5, 3×3, 32 3×3, 3×3, 32 3×3, 3×3, 32 / 1024 6
RNNs / / / / 300 1024 6
CNNs+RNNs 7×7, 3×3, 16 5×5, 3×3, 32 3×3, 3×3, 32 3×3, 3×3, 32 300 1024 6

evaluation part and are denoted as unknown attacks. The
purpose of adding unknown attacks is to test the generalization
ability of the spoofing countermeasures to previously unseen
attacks. A Summary of statistics of the ASVspoof 2015 Corpus
is shown in TABLE III.

TABLE III
STATISTICS OF ASVSPOOF 2015 CORPUS. S1 TO S5 ARE KNOWN
ATTACKS, S6 TO S10 ARE UNKNOWN ATTACKS SEEN ONLY IN THE

EVALUATION SET. DEV=DEVELOPMENT; EVA=EVALUATION. WE ALSO
PROVIDE THE MEAN DURATION OF EACH SPEECH TYPE FOR EVALUATION

SET.

Spoofing Train Dev Eva Eva MD / s
Genuine 3750 3497 9404 3.58

S1 2525 9975 18400 3.50
S2 2525 9975 18400 3.50
S3 2525 9975 18400 2.63
S4 2525 9975 18400 2.63
S5 2525 9975 18400 3.50
S6 0 0 18400 3.50
S7 0 0 18400 3.50
S8 0 0 18400 2.63
S9 0 0 18400 3.50
S10 0 0 18400 2.48

B. Evaluation metric

While more details regarding the evaluation metric can be
found in [44], we provide a brief overview in this section. The
evaluation metric provided by the ASVspoof 2015 Challenge
treats spoofing detection as a verification task: test whether
the utterance belongs to the genuine speech class. We use the
false alarm rate, Pfa(θ) and the miss rate, Pmiss(θ), in a way
similar to the evaluation of speaker recognition, which are
defined in the challenge as:

Pfa(θ) =
# {spoofed trials with score > θ}

# {total spoofed trials}
,

Pmiss(θ) =
# {genuine trials with score ≤ θ}

# {total spoofed trials}
.

(5)

The Equal Error Rate (EER) is the primary metric for the chal-
lenge. EER corresponds to the threshold θ|EER at which the
two detection error rates are equal (i.e., EER = Pfa(θ|EER)
= Pmiss(θ|EER)). In this study, we use the same metric for
ease in comparison with other systems for the same task.

C. Experimental setup

The sample rate of the corpus is 16 kHz. In fact, networks
that use frequency content up to 8 kHz do not help in spoofing
detection compared with that on 4 kHz frequency content

in our experiments (probably because the higher frequencies
do not contain much useful genuine-spoofing information
and potentially increases overfitting). For this consideration,
we only extract features corresponding to 4 kHz frequency
content. So, in this study, the TEO-CB-auto-Env feature is
18 dimensional, PMVDR feature is 36 dimensional, and the
number of frequency bins for the spectrogram feature is set to
128.

For DNNs with TEO-CB-Auto-Env and PMVDR features,
we follow our previous DNN setup. The only difference is the
input layer: for TEO-CB-Auto-Env, the input layer has 18×11
nodes; and for PMVDR, the input layer has 36×11 nodes. The
output layer is a softmax of dimension 6, with one output for
the human hypothesis, and one output for each of the five types
of spoof in the training set. Actually, a softmax layer with only
2 nodes (i.e., genuine and spoofing labels) does not perform
well in our experiments, mainly because of overfitting and
imbalanced data (3750 genuine utterances vs. 12625 spoofed
utterances). We compute the log-likelihood ratio (LLR) given
the proposed networks:

LLR = logP (genuine|F)− log(1− p(genuine|F)), (6)

where F is the feature vector, P (genuine|F) is the output
posterior w.r.t. the genuine model.

For CNNs, RNNs and CNNs+RNNs with spectrogram
features as input, detailed architecture hyper-parameters are
illustrated in TABLE II. We also explored adding TEO-
CB-Auto-Env and PMVDR features to these more advanced
networks, but no better results were achieved due to overfitting.

With the experimental setup, results from 5 newly proposed
systems (i.e., DNNs with TEO and PMVDR, CNNs, RNNs
and CNNs+RNNs with spectrogram features) are reported in
the following sections.

D. Results on development set
The EER performance from different proposed systems and

their fusion on the development set are listed in TABLE V.
The DET curves are also illustrated in Fig.8. From the ex-
perimental results, we confirm that all three proposed features
are effective in spoofing detection. Compared with ether the
TEO or PMVDR i-vector system in our previous submissions,
the single feature TEO or PMVDR with DNN back-end
achieves better performance, which shows the effectiveness of
the discriminative model such as DNNs in spoofing detection
task.

By converting speech into a spectrogram feature set as the
input feature, CNN achieves the best single system perfor-
mance. This is not surprising because CNNs were initially
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TABLE IV
EER(%) FOR DIFFERENT SPOOFING ATTACKS ON EVALUATION DATA. KNOWN ATTACKS INCLUDE S1-S5; UNKNOWN ATTACKS INCLUDE S6-S10. WE

ALSO REPORT THE AVERAGE EER OF ALL ATTACKS, IN THE COLUMN OF “ALL”.

Spoofing attacks S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 known unknown all
Spectro/CNN 0.08 0.19 0.02 0.03 1.26 1.48 0.68 0.01 0.16 26.83 0.31 5.83 3.07
Spectro/RNN 1.21 0.79 0.24 0.39 1.77 0.87 0.96 0.04 0.41 17.97 0.87 4.05 2.46
Spectro/CNN+RNN 0.16 0.50 0.03 0.03 1.38 0.85 0.91 0.03 0.59 14.27 0.40 3.33 1.86
fusion 0.09 0.29 0.00 0.00 0.99 0.64 0.71 0.00 0.29 11.67 0.27 2.66 1.47

designed for tasks such as image classification. System fusion
further improves robustness for our proposed systems. In
the experiments, a greedy fusion and a selective fusion are
compared. The relatively poor performance of the 5-way
(System No. a-e) system greedy fusion compared with the
3-way (System No. c-e) system selective fusion shows that
it is not always a good idea to integrate all systems. Also,
integrating multiple systems is very computational expensive.
Careful selective fusion could lead to the best performance.

Since features with a DNN back-end did not show much
performance improvement for development set, we only report
our results with more advanced deep architectures such as
CNNs, RNNS and CNNs+RNNs on evaluation set.

TABLE V
EER% OBTAINED FROM DIFFERENT SYSTEMS AND THEIR FUSED

SYSTEMS ON DEVELOPMENT SET.

No. System S1 S2 S3 S4 S5 all
a TEO/DNN 2.43 2.82 0.49 0.52 5.27 2.31
b PMVDR/DNN 1.52 1.07 0.76 0.85 2.98 1.44
c Spectro/CNN 0.10 0.08 0.03 0.03 1.60 0.36
d Spectro/RNN 1.13 0.88 0.22 0.36 2.62 1.04
e Spectro/CNN+RNN 0.11 0.27 0.27 0.26 1.19 0.42

a-e fusion 0.48 0.58 0.22 0.13 1.39 0.49
c-e fusion 0.09 0.19 0.00 0.01 0.68 0.19
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Fig. 8. DET plots for different system on developemnt set. Spectro/CNN
stands for Spectrogram with CNN back-end.

E. Results on evaluation set

In this section, we report results on the evaluation set.
TABLE IV details the EER for different spoofing attacks for
our proposed systems. For a single system, it appears that
Spectro/CNN achieves effective performance in all spoofing
classes S1-S9, expect in S10. While on an alternative aspect,
RNNs or CNNs+RNNs could be a better spoofing detector for
case S10. For consideration in system development, although
Spectro/CNN+RNN does not have the best performance in
every spoofing attack, it achieves state-off-the-art single sys-
tem performance for overall attacks. From our perspective,
Spectro/CNN+RNN acts in a manner that provides a balanced
trade-off between CNN and RNN systems. As shown in
TABLE IV, fusion with three systems further improves the
robustness of our proposed spoofing detector.

V. DISCUSSION

Thus far, we have seen a simple general feature (i.e.,
spectrogram) with deep learning frameworks can yield state-
off-the-art performance for spoofing detection. Unfortunately,
we still see a large gap between S10 and other spoofing attack
cases. In this section, we discuss some observations we find
in the experiments. Particularly, we focus on the variability
introduced by duration mismatch, and propose some possible
solutions as directions for future work.

A. Does duration matter?

The duration mismatch is one of the major issues in speaker
verification [45], [46]. In a conventional i-vector system, du-
ration mismatch can also be interpreted as context mismatch,
because short duration always results in insufficient data for
effective MAP adaption.

Motivated by the problem in speaker verification, we ex-
plore how duration influences spoofing detectors. First, we
split each spoofing set into two subsets according to a de-
termined duration size. As shown in TABLE III, S10 has
the smallest mean duration–2.48s (This could be the reason
that S10 does not perform well in most spoofing detection
systems.). We use 2.5s as the criteria for a data set partition.
Next, we compute the EER for long and short duration subsets,
as illustrated in TABLE VI. For demonstration simplicity, we
only show results from two systems (i.e., TEO/PMVDR i-
vector system and Spectro/CNN system).

From TABLE VI, it is obvious that S10 has the largest
number of short duration utterances, which might be a reason
for relatively high EER in S10 spoofing detection. It is noted
that spoofing S3, S4, and S8 have similar numbers of short



JOURNAL OF LATEX CLASS FILES 8

TABLE VI
EER(%) FOR LONG/SHORT DURATION SUBESTS ON EVALUATION DATA. 2.5S DURATION IS SELECTED AS THE PARTITION CRITERIA. UTTERANCE

NUMBER FOR EACH SUBSET IS ALSO GIVEN.

Spoofing attacks S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
utt number (short) 2848 2848 9298 9309 2868 2740 2848 9359 2848 10425
utt number (long) 15552 15552 9102 9085 15532 15660 15552 9041 15552 7975
EER% (short/i-vector) 0.50 2.75 0.07 0.14 1.17 2.84 0.44 0.17 0.47 26.72
EER% (long/i-vector) 0.19 2.04 0.07 0.08 0.69 2.23 0.19 0.11 0.28 27.66
EER% (difference/i-vector) 0.31 0.71 0.00 0.06 0.48 0.61 0.25 0.06 0.19 -0.86
EER% (short/CNN) 0.09 0.31 0.02 0.02 1.48 2.28 1.15 0.01 0.19 24.86
EER% (long/CNN) 0.07 0.15 0.02 0.03 1.22 1.32 0.60 0.01 0.15 29.31
EER% (difference/CNN) 0.02 0.16 0.00 -0.01 0.26 0.96 0.55 0.00 0.04 -4.45
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Fig. 9. DET plots for S10 short/long duration subsets with 4 different systems. All 4 different systems have the same pattern, which shows that EER for
short duration subset is lower than that for long duration subset. This observation is different from other 9 spoofing attacks, and thus is very hard to explain.

utterances. So, short duration may be one of the reasons for
poor spoofing detection performance, but it is not necessary
the only reason in explaining the problem.

Compared with the i-vector system, our proposed spec-
tro/CNN system seems to have potential to partially com-
pensate for duration mismatch. As seen in TABLE 6, 7 out
of 10 spoofing attacks show decreasing gaps between short
and long duration subsets. While the only unusual behavior
is found in S10. For S10, it is surprising to see that short
duration set performs better than the long duration set. This
observation is confirmed by various systems, see Fig. 9. At the
same time, our padding/cropping approach for the spectrogram

feature set is no longer effective to compensate for duration
mismatch, Actually, the EER difference becomes larger in our
Spectro/CNN spoofing detector. All these observations are not
common in speaker verification research, and thus are very
difficult to address. The phenomenon discussed in this section
is intended to draw more attention for research of speaker
verification anti-spoofing.

B. Extract “deep features” for utilizing the back-end advance-
ments in speaker verification?

In our current systems, the spoofing detection decision is
directly made by the probabilities from the final output layer.
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Our proposed methods follow an end-to-end manner, where no
additional concepts or heuristics are needed to train another
back-end classifier.

At the same time, we feel that we have not fully explored
the potential of our proposed frameworks. Extracting so-
called deep features and then applying back-ends from speaker
verification research community is a good direction. In fact,
Linear Discriminative Analysis (LDA), Within-class Covari-
ance Normalization (WCCN), or one-class SVM are reported
to be effective for spoofing detection as well [18], [47].
Although, it is easy to extend our current models to such ideas,
we restrict our contributions in this study to the investigations
of different deep learning frameworks for spoofing detection.
Therefore, the idea of combined deep features with other back-
ends remains as a topic for future work to consider.

VI. CONCLUSION

In this study, we explored the application of deep learning
as a tool for speaker verification anti-spoofing. To do so,
we implemented several deep learning frameworks, including
DNNs, CNNs and RNNs. Based on this, we proposed a
novel architecture for spoofing detection, which integrates the
advantages of CNNs for feature extraction and RNNs to model
long-term dependencies. All these models were proved to
be effective in our experiments, and our proposed combined
CNN+RNN model achieved the state-off-the-art single system
performance. System combination can further improve system
robustness.

For research on feature extraction, three features (i.e., TEO-
CB-Auto-Env, PMVDR and more general spectrogram feature)
which are expected to generalize well for unseen spoofing
attacks were employed. The effectiveness of TEO-CB-Auto-
Env and PMVDR feature were analyzed. The spectrogram
feature set, proposed as the input to the deep frameworks in
this study, proved to be a good feature that does not depend
on spoofing prior knowledge.

Extensive experiments were conducted with our propose
system. The variability introduced by duration mismatch was
also investigated. Using dataset partitioning, duration mis-
match in spoofing detection was carefully analyzed. The
results showed that our feature preparation method combined
with deep back-ends can compensate for duration mismatch to
some extent. At the same time, an interesting but challenging
observation was found with spoofing attack S10. This S10 case
provided relatively poor performance, and it also showed the
opposite trends compared with the other nine spoofing attacks.

The study therefore highlights effective methods for spoof-
ing detection, as well as fundamental observations for future
work in deep features for spoofing detection advancements.
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and A. Sizov, “Asvspoof 2015: the first automatic speaker verification
spoofing and countermeasures challenge,” in Proc. Interspeech, 2015.

[7] B. L. Pellom and J. H. L. Hansen, “An experimental study of speaker
verification sensitivity to computer voice-altered imposters,” in Proc.
IEEE Int. Conf. Acoust. Speech, Signal Process., vol. 2, 1999, pp. 837–
840.

[8] J. Villalba and E. Lleida, “Preventing replay attacks on speaker verifi-
cation systems,” in IEEE Int. Carnahan Conf. on Security Technology
(ICCST),, 2011, pp. 1–8.

[9] F. Alegre, A. Janicki, and N. Evans, “Re-assessing the threat of replay
spoofing attacks against automatic speaker verification,” in IEEE Int.
Conf. of the Biometrics Special Interest Group (BIOSIG),, 2014, pp.
1–6.

[10] Z. Wu, S. Gao, E. S. Cling, and H. Li, “A study on replay attack and anti-
spoofing for text-dependent speaker verification,” in Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference
(APSIPA), 2014, pp. 1–5.

[11] P. L. De Leon, M. Pucher, J. Yamagishi, I. Hernaez, and I. Saratxaga,
“Evaluation of speaker verification security and detection of hmm-based
synthetic speech,” IEEE Trans. on Audio, Speech, and Lang. Process.,
vol. 20, no. 8, pp. 2280–2290, 2012.
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